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Abstract: The National Land Cover Database (NLCD) provides time-series data characterizing the
land surface for the United States, including land cover and tree canopy cover (NLCD-TC). NLCD-TC
was first published for 2001, followed by versions for 2011 (released in 2016) and 2011 and 2016
(released in 2019). As the only nationwide tree canopy layer, there is value in assessing NLCD-
TC accuracy, given the need for cross-city comparisons of urban forest characteristics. Accuracy
assessments have only been conducted for the 2001 data and suggest substantial inaccuracies for that
dataset in cities. For the most recent NLCD-TC version, we used various datasets that characterize
the built environment, weather, and climate to assess their accuracy in different contexts within
27 cities. Overall, NLCD underestimates tree canopy in urban areas by 9.9% when compared to
estimates derived from those high-resolution datasets. Underestimation is greater in higher-density
urban areas (13.9%) than in suburban areas (11.0%) and undeveloped areas (6.4%). To evaluate how
NLCD-TC error in cities could be reduced, we developed a decision tree model that uses various
remotely sensed and built-environment datasets such as building footprints, urban morphology
types, NDVI (Normalized Difference Vegetation Index), and surface temperature as explanatory
variables. This predictive model removes bias and improves the accuracy of NLCD-TC by about 3%.
Finally, we show the potential applications of improved urban tree cover data through the examples
of ecosystem accounting in Seattle, WA, and Denver, CO. The outputs of rainfall interception and
urban heat mitigation models were highly sensitive to the choice of tree cover input data. Corrected
data brought results closer to those from high-resolution model runs in all cases, with some variation
by city, model, and ecosystem type. This suggests paths forward for improving the quality of urban
environmental models that require tree canopy data as a key model input.

Keywords: urban tree canopy; national land cover database; tree cover bias correction; accuracy
assessment; urban density; tree cover; ecosystem accounting

1. Introduction

Urban trees are an important feature in evaluating urban landscapes and ecosystem
services. The US does not have any nationwide tree canopy cover data product. The
Multi-Resolution Land Characteristics (MRLC) Consortium produces the National Land
Cover Database (NLCD) for the United States using Landsat satellite imagery and other
supplementary resources such as high-resolution imagery and digital elevation models [1].
In this consortium, the US Geological Survey (USGS) leads the development of NLCD land
cover and imperviousness datasets, National Oceanic and Atmospheric Administration
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(NOAA) the development of the Coastal Change Analysis Product (C-CAP) land cover
product for coastal zones, and the US Department of Agriculture Forest Service (USFS)
the development of the NLCD tree canopy cover (NLCD-TC) product [2]. NLCD-TC
is an essential nationwide dataset that has been extensively used for a wide variety of
applications. Some examples include modeling urban heat island effects [3], biodiversity [4],
stormwater management [5], flood regulation [6], air quality [7], urban forest health [8],
carbon sequestration [9], building energy analysis [10], and forest inventory estimation [11].
Three versions of the NLCD-TC data have been published, representing the years 2001,
2011, and 2016. The most recent version, released in 2019, includes data for the years 2011
and 2016, which allow direct comparison of NLCD-TC between years for the first time.
The 2019 release, thus, allows researchers to carry out longitudinal studies related to the
ecological and socio-economic roles of trees. Such longitudinal data can be valuable for
time-series analysis of, for instance, tree canopy change [12], ecological processes dependent
on these, or ecosystem accounting [13,14].

Although higher-resolution (i.e., 1 m) data for land cover, tree canopy cover, and
impervious surfaces are available for many cities and regions in the US, the production of
such data requires costly high-resolution observation platforms or the use of active sensors
such as LiDAR [15]. At the extent of the conterminous US, NLCD products are still the
most readily available source—having wall-to-wall coverage and consistent methods across
space and time. Therefore, in the absence of a consistent and nationwide high-resolution
dataset on urban forests, NLCD-TC data are often used by default to map urban trees
where no alternative high-resolution data exist or in cases where large-area comparisons
are needed. Although past studies have evaluated the NLCD-TC error [16,17], the extent to
which NLCD-TC is truly usable for this purpose is still incompletely understood. The need
for such research is augmented by MRLC intent to continue to produce these products for
future years.

Since the NLCD-TC dataset fills an important data niche, its use comes with a risk of
error propagation. For instance, Sander et al. [18] used NLCD-TC data in a hedonic model to
measure the impact of urban trees on property values for two counties in Minnesota. They
used this layer in incremental distances as a key input dataset in their models. Although
they mention that NLCD-TC data had a mean absolute error of 14.1%, they assumed
that this error can be ignored when a large number of cells is measured (i.e., 1000 pixels).
This conjecture would be correct if the error were normally distributed around zero and
across space. However, this assumption is an unsafe one because the error is not evenly
distributed across different landscapes, and, thus, can introduce omitted variable bias into
statistical models.

Many cities care about measuring their tree canopy so that they can track its changes
over time and the impacts of those changes. For instance, Tampa Bay, Florida measures its
urban forest every five years and quantifies the ecosystem service benefits it provides for
use in urban forest management [19,20]. However, many cities, particularly smaller ones,
lack the resources for periodic monitoring. In the absence of such data, local assessments
are challenging. Changes over time tend to be small, meaning that for detecting such
longitudinal assessments, a very accurate tree cover estimate is needed. Machine learning-
based predictive models may, thus, help with estimating tree cover in longitudinal, regional,
or local studies and using the data to quantify the socio-economic processes dependent on
the urban tree canopy and their development could be useful for researchers outside the
US using analogous datasets in other countries.

The original 2001 NLCD-TC dataset was modeled using a 30 m tree cover layer ag-
gregated from 1 m resolution panchromatic digital orthophoto quarter-quadrangle images
as the response variable; explanatory variables included 30 m resolution data extracted
from 1992 NLCD land cover, Landsat 5 and 7 imagery, and a digital elevation model. The
predictive model was based on regression trees and linear regression [21]. To generate the
second NLCD-TC product, representing the 2011 tree canopy, five pilot areas across the
United States were sampled using a dot grid approach. Coulston et al. [22] used manual

Default User
Highlight



Remote Sens. 2022, 14, 1219 3 of 22

photo-interpretation to define whether each point contained tree canopy or not. They used
National Agriculture Imagery Program (NAIP) imagery (1 m resolution) as the response
variable and Landsat 5 imagery and a digital elevation model as explanatory variables.
Over 63,200 locations were interpreted to produce the response variable (Yang et al., 2018).
Their predictive model was based on random forest regression, and the root mean square
error (RMSE) of their model varied between 10 and 18%. Coulston et al. [22] used five
NLCD mapping zones as sampling zones to train their model and reported that the error is
greater in urban areas. However, their sampling zones do not represent different urban
density profiles in urban areas; therefore, their method does not provide evidence on how
the error varies across different density ranges.

As described above, basic definition, data, and algorithms for developing NLCD-
TC 2001 and 2011 data were fundamentally different in terms of sampling and response
variables. Critically, the approach to identifying tree canopies in the response imagery was
also different. In the 2001 data, trees were classified if vegetation was measured to be 5 m or
taller. In the 2011 data, trees were classified as a life form with no height threshold [23]. Due
to these substantial differences, 2001 and 2011 datasets are not comparable and, therefore,
not appropriate for longitudinal studies. Currently, the NLCD website does not include the
2001 data in its catalog.

In fall 2019, a third generation NLCD-TC database was published, including tree
canopy data that were generated for the years 2011 and 2016 [24]. The 2019 NLCD-TC
version uses similar methods as the previous version. To produce the 2016 products, the
same “resources were not available to re-interpret tree canopy cover of all of the locations used in
the [original] 2011 product. Rather 3% of the original locations were re-interpreted using newer
NAIP imagery based on the occurrence of wildfires or large NDVI changes detected in Landsat-
derived time series” [24] (p. 113). To build the explanatory variables for the production of the
2011 product, Landsat 5 Thematic Mapper imagery was used, whereas for the 2016 product,
Landsat 8 Operational Land Imager imagery was used. The main predictive algorithm
remains random forest regression.

Three studies have assessed the accuracy of the 2001 NLCD-TC dataset. First, Homer
et al. [25] evaluated the accuracy of the NLCD-TC 2001 data in three NLCD mapping
zones in Virginia, Minnesota, and Utah. They found mean absolute error in each zone
of 9.9, 14.1, and 8.4%, respectively. A second study by Greenfield et al. [16] used aerial
photos to identify trees in selected geographies and compared them with NLCD-TC values.
To determine the assessment locations, they reclassified the 65 NLCD mapping zones
into five larger regions (Southeast, Northeast, Midwest, Mountain West, and Arid West).
Within four randomly selected NLCD mapping zones in each region, they selected seven
incorporated areas or census-designated places of varying population densities. They
randomly distributed 200 points across these locations. Greenfield et al. found that the
NLCD-TC 2001 data underestimate tree cover by about 9.7% on average, with a consistent
error rate across the conterminous United States and no statistical differences among
different regions. A third accuracy assessment by Nowak and Greenfield [17] used manual
photo-interpretation in a manner similar to Greenfield et al. [16] but distributed their
samples in all 65 NLCD mapping zones. Nowak and Greenfield [17] found that the 2001
NLCD-TC data underestimate tree cover in 64 of the zones by 9.7% on average. These
studies are based on dispersed sampling across different zones and climates. Notably, they
did not identify the error distribution across the gradient of settlement density. The accuracy
of NLCD-TC 2011 data also has not been independently studied—either for the first 2011
dataset released in 2016 or the more recently released 2019 product, which covers the years
2011 and 2016. Studies like these can shed light on the ways we use NLCD products.

Urban areas are typically more heterogeneous than rural areas. Any given urban
NLCD 30 m grid cell often aggregates a wider variety of land cover classes into a single
type than a more homogeneous non-urban environment. Further, “canopies” composed of
a single tree, often smaller than a single pixel, are common in urban areas, and it is unclear
if and when NLCD-TC data detect these isolated tree patches.
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Given that no other national urban forest data sources exist, there is a need to better
understand and quantify patterns and source error in the NLCD-TC datasets for urban
areas so that the potential uses and limits of this dataset for this highly important context
can be better understood. The objective of this paper is to do so by running comparisons of
NLCD-TC against more accurate, high-resolution urban tree cover data by city and across
multiple variables describing the built environment, climate, and ecoregion characteristics.
Because high-resolution tree canopy data can be used to derive a percent tree cover for
the same pixel area, albeit using finer scale building blocks, it is valid to compare the two
for accuracy. However, it is worth noting that no matter how accurate NLCD-TC is in its
pixel-level tree percentages, it can never characterize where the tree canopies are within that
pixel when coverage is less than total, meaning that NLCD-TC will never be appropriate
for analyses that require a high level of spatial precision.

We next evaluate methods of accuracy enhancement using additional nationally avail-
able explanatory variables derived from other sources, including NLCD land cover, regional
climate data, Landsat 8 imagery, and building footprint data. This approach provides an
exploratory application of how effectively remotely sensed products and more extensive
training data (i.e., high-resolution tree canopy cover datasets) can address NLCD-TC spa-
tial error in urban areas. Finally, we evaluate the implications of this error assessment
for a modeling application where NLCD-TC is a key model input—in our case, city-scale
ecosystem accounting/ecosystem service assessment [13,14]. This analysis shows how
uncertainties in the NLCD-TC data affect research conclusions; though limited to a spe-
cific application, we expect our results to have relevance for the modeling of other urban
phenomena dependent on tree canopy cover.

2. Methods

In this section, we first describe the data that we used in this work, then our data
compilation and analysis procedures. The datasets that we used served two purposes:
(1) accuracy assessment of the NLCD-TC data in different urban areas and (2) construction
and testing of a predictive model to improve the quality of NLCD-TC and its applications
to environmental modeling in urban areas.

2.1. Data

For the accuracy assessment, we used the most recent version of the 2011 NLCD-TC
for the conterminous United States from the MRLC [1] as the target variable of interest.

We used high-resolution (1 m) land cover data (that includes tree canopy cover as a
class) for 27 cities to build a 30 m layer (hereafter referred to as the “high-resolution derived
TC” data) for accuracy assessment of the NLCD-TC data in urban areas as described in
Section 2.2. For 10 cities, we used data from the US Environmental Protection Agency
(EPA) EnviroAtlas portal. The reported fuzzy accuracy of these layers ranges from 83 to
95% at the 1 m scale [26]. For 17 cities, we received the data produced by the University of
Vermont Spatial Analysis Laboratory (UVM SAL: 2011–2017; EPA data for Cleveland, OH,
and Chicago, IL, USA, were also originally developed by the University of Vermont). Only
a few cities provide a formal accuracy assessment for these layers. The tree cover layers
for New York City and Philadelphia are 99 and 97% accurate [27]. Since the UVM SAL
uses a similar procedure for all cities, including manual correction, it is expected that tree
cover data for other cities will have similar accuracy levels. Nine of the datasets covered
entire counties (e.g., Baltimore County, MD, USA); others covered small (e.g., Cambridge,
MA, USA) to large (e.g., New York City, NY, USA) cities. City/county data represented
the years 2007 through 2016, though nearly 60% of data are for 2010 and 2011. To evaluate
how representative the data were across diverse climatic conditions, we classified each
city/county dataset by EPA Level II Ecoregion [28] (Table 1).



Remote Sens. 2022, 14, 1219 5 of 22

Table 1. Cities with high-resolution (1 m) land cover by US Environmental Protection Agency Level II
Ecoregion [28]. City/county data are sourced from either the • US Environmental Protection Agency
EnviroAtlas [26] or * the University of Vermont [27].

Level II Ecoregion Code Level II Ecoregion City/County Year

7.1 Marine West Coast Forest • Portland, OR 2010

8.1 Mixed Wood Plains

* Cambridge, MA 2016

* Cleveland, OH 2011

* New York, NY 2011

* Syracuse, NY 2010

8.2 Central USA Plains
* Chicago, IL 2010

• Milwaukee, WI 2010

8.3 Southeastern USA Plains

* Annapolis, MD 2007

* Anne Arundel County, MD 2007

* Baltimore County, MD 2007

* Harford County, MD 2011

* Howard County, MD 2007

* Kenton County, KY 2012

• Memphis, TN 2010

* Montgomery County, MD 2014

* Prince George County, MD 2014

* Philadelphia, PA 2009

* Washington, DC 2011

8.4 Ozark/Ouachita-Appalachian Forests

• Birmingham, AL 2011

* Jefferson County, WV 2011

* Pittsburgh, PA 2015

8.5 Mississippi Alluvial and Southeast USA Coastal Plains * Wicomico County, MD 2011

9.4 South Central Semiarid Prairies
• Austin, TX 2010

* Denver, CO 2014

10.1 Cold Deserts • Boise, ID 2010

10.2 Warm Deserts • Phoenix, AZ 2010

11.1 Mediterranean California • Fresno, CA 2010

We used six additional characteristics, listed below, as independent variables to con-
struct a predictive model of tree canopy cover that aims to improve on the native NLCD-TC
product in cities. Additionally, we used surface temperature, NDVI, building footprint,
and urban density data to assess how NLCD-TC accuracy varies based on environmental
and built environment characteristics (Section 2.2).

(a) Surface temperature and NDVI. Tree cover has a negative correlation with surface
temperature but a positive correlation with normalized difference vegetation index
(NDVI) [29,30]. Therefore, we produced surface temperature and NDVI datasets from
Landsat 8 images for each city or county (Table 1) as explanatory variables to evaluate
NLCD-TC error. To produce these, we downloaded the four least cloud-covered
summer images for the years 2013–2015. Considering the limited number of cloud-
free images in humid parts of the US in the summertime, we judged four images
per tile to provide sufficient variation and manageable computational demand. We
calculated surface temperature using Landsat 8 band 10 and NDVI using bands 4
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and 5 of the images based on USGS guidelines [31]. We extracted median values for
surface temperature and NDVI for all four images in each scene.

(b) Building footprints. In urban environments, trees and buildings create a heteroge-
neous environment, which makes tree detection using remotely sensed data challeng-
ing. To create a gradient of built density, we used the area of building footprints in
each cell; this dataset is extracted from Microsoft building footprint data [32]. Mi-
crosoft reported that these data have 99.3% precision and 93.5% pixel recall accuracy.
Heris et al. [33] evaluated the accuracy of this dataset and found it to detect 96, 93, and
94% of buildings over 100 m2 in Denver, CO, New York City, NY, and Los Angeles
County, CA, respectively. We used three of the six summary datasets generated by
Heris et al. [33]: (1) total building footprint coverage per cell (m2 per 900 m2 cell);
(2) number of buildings that intersect each cell; and (3) area of the average building
intersecting the cell (m2). These data have been converted into raster datasets that
summarize building data for 30 m cells aligned with NLCD data, better meeting the
needs of national-scale models. Because Microsoft used aerial photos from different
years to generate this dataset, they did not provide a specific date for these data.

(c) Urban density. We used an urban morphology classification produced by Heris [34],
which is based on Census and impervious surface data for the years 2000 and 2010 (we
used the 2010 product in this study). This classification is based on the neighborhood
density of each 30 m cell for the conterminous US for five densities: high, medium,
and low-density urban areas, urban fringe, and suburbs. This dataset helps to stratify
the distribution of NLCD-TC error across different urban morphologies in built
environments as well as natural (non-built) areas falling within cities or counties
of interest. We also used this dataset to separate built and undeveloped areas. For
undeveloped cells, we applied a query to exclude cells that have an impervious
surface cover greater than 0%.

(d) Climate data. To incorporate variation in climatic environments across cities, which
helps explain differences in urban tree occurrence, in the NLCD-TC predictive model,
we extracted the average annual high and low temperature and average annual
precipitation for each city (1990–2018) from the US Climate Data website [35].

(e) Year built of structures. We used the median year built of structures from the 2010 Cen-
sus Block Group data [36] to incorporate the age of neighborhoods in our NLCD-TC
predictive model assessment. This accounts for the fact that the maturity and size
of urban tree canopies often correlate with the age of establishment of residential
neighborhoods [37].

(f) National Land Cover Database (NLCD) land cover. We used the most recent edition
of the 2011 NLCD land cover [24] in the NLCD-TC predictive model.

2.2. Dependent and Independent Variables

To compare NLCD-TC values with the high-resolution derived TC data, we aggregated
the amount of tree cover in 1 m cells to 30 m cells and calculated the percent cover for
every 30 m cell. To evaluate the accuracy of the year 2011 NLCD-TC in US urban areas
across different regions and landscapes, we initially calculated error (the difference between
high-resolution derived TC and NLCD-TC at 30 m resolution). We report the mean error,
RMSE, and Kolmogorov–Smirnov score. Our subsequent analysis has three parts. First, we
evaluated the distribution of error in urban areas, across cities, and in different landscapes.
Next, we developed a predictive model to improve the accuracy of the NLCD-TC dataset
in urban areas. Finally, we showed how the predictive model can improve the accuracy of
NLCD-TC in modeling applications for Denver, CO, and Seattle, WA.

To evaluate NLCD-TC error across 27 cities and counties, we generated scatterplots
and histograms of the values of tree cover and their error (high-resolution derived TC minus
NLCD-TC) in different landscapes. The categories we compared include EPA ecoregions,
built versus undeveloped areas, cities, gradients for urban density, tree canopy cover, NDVI,
total building footprint coverage, and surface temperature. Plotting these distributions
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helped us to understand error distribution patterns of the NLCD-TC 2011 data. For example,
the total building footprint variable can help determine whether the error is larger in cells
that have greater building cover.

2.3. Predictive Model

We developed a predictive model that aims to reduce tree canopy error rates in cities
using a series of explanatory variables. Our decision tree model used high-resolution
derived TC as the response variable and the following explanatory variables: NLCD-
TC, NLCD land cover, building coverage, surface temperature, NDVI, urban density,
median year built of housing units, average precipitation, average high temperature, and
built/undeveloped. To compile the explanatory variables, we used the NLCD-TC grid
structure to convert all layers to raster datasets with matching resolution, extent, and
projection system. Ensuring that all raster layers have the same properties enabled the
conversion of the raster layers to Python Numpy Arrays, which allows the use of a wide
range of optimized libraries. We converted all explanatory layers, clipped from national
layers to the 27 cities and counties, to Numpy arrays and then compiled them in a single
Pandas dataframe in which every row is the cell data point, and every column is a variable.
That primary data frame contains 34.8 million records after excluding cells with open water
or no-data values.

We used the Scikit Learn package (version 0.24.2) for Python [38] to run the decision
tree regressions. To avoid overfitting, we used a two-level incremental sampling method
to evaluate the performance of the model. This sampling method also mitigates potential
spatial autocorrelation. The incremental sampling method randomly sampled a fraction of
the data. The fractions started from 0.1%, and in 17 steps, reach 100% of the data. For each
fraction, we performed the second level of sampling through which we randomly sampled
80% of the data for training the regression model and used 20% of it for testing the results.
This two-level sampling method created a 17-step incremental fraction that starts from 0.08
to 0.8% for training the model. The model performance was stable at 75–76% for sample
sizes greater than five million (14% of the entire data; Figure 1).
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Figure 1. Model performance for incremental sample sizes (sample of cells drawn for running the
predictive model).

2.4. Validation of the Predictive Model

To examine the predictive power of our model, we separated the data of two cities
in widely differing climate zones (Denver, CO, and Seattle, WA, USA) from our training
dataset and used the model to correct the bias of NLCD-TC in these cities. We report and
present the improved NLCD-TC error distributions and fitted curves.



Remote Sens. 2022, 14, 1219 8 of 22

2.5. Use Case: Running Corrected Data vs. Native NLCD-TC for Two Ecosystem
Accounting Models

We evaluated the impact of correcting NLCD-TC on two ecosystem service models
that depend on TC as a key input, which we ran for Denver and Seattle. These two models
quantify (1) the amount of rainfall intercepted by urban trees and (2) the quantity of cool-
ing energy savings that trees provide through urban heat mitigation [14]. We used three
different datasets to show the sensitivity of such models to input tree canopy datasets. The
input tree cover data include (1) NLCD-TC 2011 (30 m resolution), (2) corrected NLCD-TC
from our predictive model (30 m resolution), and (3) high-resolution tree cover datasets
for the two cities (1 m resolution). The interception model uses tree cover and year 2011
precipitation data to quantify rainfall interception by trees during daily storm events
throughout the year, accounting for leaf-on and -off seasons (with leaf area index values
reduced during the leaf-off season). The heat mitigation impact model uses tree cover,
buildings, surface temperature, and weather station data to estimate the cooling energy
savings provided by trees [14]. We used the methods and terminology recommended by
the United Nations for implementing ecosystem accounting—an internationally standard-
ized approach to systematically quantify ecosystems and the services they provide to
the economy. Along with tracking changes over time in ecosystems extent and condition,
the System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA)
quantifies, typically using models, the ecosystem services produced by specific ecosystems
and used by economic units (businesses, households, and government), using a framework
consistent with national economic accounting principles [39]. We used NLCD land cover
data as a proxy for ecosystem types and stratified our outcomes using this layer to estimate
the services that each ecosystem type provided. In this context, we generally assumed
that the high-resolution tree cover data will typically provide more accurate estimates for
modeled ecosystem services, though a true accuracy assessment of ecosystem service model
results would require calibration data that are seldom available at city and national scale.

2.6. Code Availability

We used Python to program the analysis procedure and generate a variety of figures;
we include several key figures representative of our analysis in the Results section be-
low. We included the Jupyter Notebook that contains the code and all figures in a code
repository [40].

3. Results
3.1. General Error Distribution

Our assessment for NLCD-TC 2011 compared to high-resolution derived TC data
from 27 cities and counties shows a mean error of 9.9%, an absolute value of the error
of 14.9%, and an RMSE of 23.3. The K–S test is 0.28, which reports the distance between
the NLCD-TC distribution function and the high-resolution derived TC data distribution.
The NLCD-TC 2011 tends to underestimate overall tree cover in cities (Figure 2). Across
individual cities, overall error distribution patterns and differences in error vary (Figure 3
shows patterns for nine cities; additional cities are shown in the code repository). The
common pattern in most cities is a greater underestimation than overestimation of tree
cover on a grid cell basis (positive error values). This pattern is more extreme in cities such
as Denver, Boise, and New York.
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3.2. Error Distribution across Different Landscape Characteristics

Multidimensional error analysis provides insight into the uncertainty of the original
data products and the choice of appropriate explanatory variables to build a predictive
model to reduce the tree canopy error in cities. In this section, we assess how NLCD-TC
2011 accuracy varies across the following variables: (a) EPA ecoregions, (b) built versus
undeveloped areas, (c) urban density, (d) tree cover gradients, (e) cities, (f) NDVI, (g) surface
temperature, and (h) building footprint coverage.

(a) Error distribution across EPA ecoregions: Average error showed considerable
differences across EPA ecoregions. Figure 4 shows the EPA Level II ecoregions of the US
cities in warm deserts, Mediterranean, and Ozark/Ouachita-Appalachian forests regions
(8-4, 10-2, and 11-1) have the lowest error while cold deserts and central plains (10-1, 8-1,
and 8-2) have the largest error values.
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(b) Error distribution across built versus undeveloped areas: Mean error is consid-
erably higher in the built areas (11.8%) than undeveloped areas (6.4%). NLCD-TC 2011
underestimates tree cover consistently in built areas.

(c) Error distribution across urban density: Average NLCD-TC error also increases
with urban density. The only exception to this pattern is that error in high-density areas is
slightly less than in medium-density areas (Figure 5).
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Figure 5. Average National Land Cover Database-Tree Canopy error (deviation by % when compared
to high-resolution derived data) by urban density.

(d) Error distribution across tree cover gradients: In all cities, in cells with greater
tree canopy cover, the average error is also larger (Figure 6). The slope of regression lines
varies across cities. For instance, in Baltimore County, MD, and Austin, TX, the slopes are
generally small, whereas, in Denver, CO, and Boise, ID, the slope is relatively large. These
differences reflect the average tree canopy area in different cities and climates.
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Figure 6. Variations in error (deviation by % when compared to high-resolution derived data) by
percent tree cover by city/county. Blue dots show the average of error in each range ([0,5], [5,10],
[10,20], [20,40], [20,60], [60,80], [80,100]) and the blue line is the regression line; the shaded area shows
the confidence intervals of slopes and intercepts.
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(e) Error distribution by cities/counties: NLCD-TC error varies considerably among
cities/counties (Figure 7). In all cities but Memphis, TN, NLCD-TC underestimates tree
cover. Washington, DC, has the largest average error (21%).
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Figure 7. National Land Cover Database-Tree Canopy error (deviation by % when compared to
high-resolution derived data) by cities/counties.

(f, g, h) Error distribution by NDVI, surface temperature, and building footprint
gradients: For areas with higher surface temperatures, which typically have less tree
canopy cover, NLCD-TC error is smaller (Figure 8a). Two clusters of error emerge relative
to surface temperature—at lower temperatures (29–30 ◦C, with 15–18% error) and moderate
(30–31 ◦C) temperatures centered around zero error. The second cluster likely indicates
areas with understory vegetation and no tree cover. The NDVI scatterplot also shows
an error cluster (approximately 15–20%) at higher NDVI levels (Figure 8b). This is most
likely associated with the underestimation of tree cover. The building footprint coverage
scatterplot shows a somewhat greater error in cells with less building coverage (Figure 8c).
When building footprint area rises above 30%, the error is smaller. This indicates areas with
more building coverage and less tree cover.
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3.3. Predictive Model Performance

The R2 or performance score of the decision tree regression is 0.76 (Table 2). Besides
NLCD-TC itself (by far the most important predictor), NLCD land cover, NDVI, and
average precipitation are the strongest predictors. As expected, NLCD-TC itself is a very
strong predictor; when we eliminated that, NDVI and NLCD land cover became strong
predictors, yielding a model with an R2 of 0.68.

Table 2. Decision tree model outcomes (the importance/coefficient of explanatory variables).

Model Parameters
Regression Results

Model with NLCD-TC Model without NLCD-TC

Model performance 0.765 0.681

Explanatory variable
importance

National Land Cover
Database-Tree Canopy 0.918 Not included

NLCD land cover 0.023 0.366

Normalized Difference
Vegetation Index 0.014 0.518

Average precipitation 0.013 0.031

Average high temperature 0.012 0.037

Building coverage 0.009 0.010

Urban density 0.004 0.011

Median year built 0.003 0.009

Surface temperature 0.002 0.013

Built/undeveloped 0.002 0.004

The predictive model improves the estimate of tree canopy cover relative to the native
(uncorrected) NLCD-TC product (i.e., the red smoothed line, representing corrected NLCD-
TC, is closer to the high-resolution green smoothed line than the native NLCD-TC blue
smoothed line, Figure 9). The model predicts 0% canopy cover cells very effectively. It also
improves the prediction of cells with 100% canopy cover compared to the native NLCD-TC.
However, it still slightly underpredicts them relative to high-resolution derived TC tree
canopy data, and it overestimates tree canopy cover at values of 1–20% and 90–99%. The
corrected tree cover data have a better error distribution centered around zero (Figure 10).
All metrics—mean error, mean absolute value of error, RMSE, and Kolmogorov–Smirnov
test score—show that the predictive model has improved the accuracy of NLCD-TC in
cities (Table 3).

Table 3. Summary predictive model output.

Metric NLCD Tree Cover Corrected Tree Cover

Mean error 8.1% −0.004%

Mean absolute error 13.5% 10.6%

Root mean squared error 21.1 16.7

Kolmogorov–Smirnov score 0.25 0.27

Default User
Highlight



Remote Sens. 2022, 14, 1219 14 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 9. Comparison of National Land Cover Database-Tree Cover, predicted tree cover, and high-

resolution derived TC tree cover histograms; the smoothed lines show the normal density line; the 

Y axis shows the percentage of data counts. 

Table 3. Summary predictive model output. 

Metric NLCD Tree Cover Corrected Tree Cover 

Mean error 8.1% −0.004% 

Mean absolute error 13.5% 10.6% 

Root mean squared error 21.1 16.7 

Kolmogorov–Smirnov score 0.25 0.27 

Figure 9. Comparison of National Land Cover Database-Tree Cover, predicted tree cover, and high-
resolution derived TC tree cover histograms; the smoothed lines show the normal density line; the Y
axis shows the percentage of data counts.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 10. Comparison of National Land Cover Database-Tree Canopy (NLCD-TC) and corrected 

tree cover error (deviation by % when compared to high-resolution derived data) distribution; the 

smoothed lines are the normal density lines. 

3.4. Validation of the Predictive Model in Denver, CO, and Seattle, WA, to Correct NLCD-TC 

Bias 

To test the performance of a predictive NLCD-TC model in two cities in widely dif-

ferent EPA ecoregions (Denver in the South-Central Semiarid Prairies and Seattle in the 

Marine West Coast Forests), we used a model that excludes these two cities from its train-

ing dataset. The predictive model improves the accuracy of NLCD-TC in both cities sub-

stantially. It performs well in reducing the number of zero-cover grid cells where NLCD-

TC underestimates tree cover considerably in both cities (Figure 11, top). The predictive 

model also produces an even distribution around zero (Figure 11, bottom). The average 

NLCD-TC error in Seattle is 11.9%, while that produced by the predictive model is 1.3%; 

these values for Denver are 5.3% and −1.5%, respectively. The predictive model, thus, im-

proved the underestimation of NLCD-TC in both cities, though it still slightly overesti-

mates tree cover in Denver and underestimates it in Seattle (both by <1.5%). 

Figure 10. Comparison of National Land Cover Database-Tree Canopy (NLCD-TC) and corrected
tree cover error (deviation by % when compared to high-resolution derived data) distribution; the
smoothed lines are the normal density lines.



Remote Sens. 2022, 14, 1219 15 of 22

3.4. Validation of the Predictive Model in Denver, CO, and Seattle, WA, to Correct NLCD-TC Bias

To test the performance of a predictive NLCD-TC model in two cities in widely
different EPA ecoregions (Denver in the South-Central Semiarid Prairies and Seattle in
the Marine West Coast Forests), we used a model that excludes these two cities from its
training dataset. The predictive model improves the accuracy of NLCD-TC in both cities
substantially. It performs well in reducing the number of zero-cover grid cells where
NLCD-TC underestimates tree cover considerably in both cities (Figure 11, top). The
predictive model also produces an even distribution around zero (Figure 11, bottom). The
average NLCD-TC error in Seattle is 11.9%, while that produced by the predictive model
is 1.3%; these values for Denver are 5.3% and −1.5%, respectively. The predictive model,
thus, improved the underestimation of NLCD-TC in both cities, though it still slightly
overestimates tree cover in Denver and underestimates it in Seattle (both by <1.5%).
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Figure 11. Distribution of tree cover (top) and error (deviation by % when compared to high-
resolution derived data) (bottom) for National Land Cover Database-Tree Canopy (NLCD-TC),
high-resolution, and corrected tree cover data in Seattle, WA, and Denver, CO; the smoothed lines are
the normal density lines.

3.5. NLCD-TC Data Correction: Effects on Ecosystem Accounting Model Results

Denver and Seattle’s urban forests have different tree cover and patch configurations—
with both figures being larger for Seattle. The average tree patch sizes for Denver and
Seattle are 133 m2 and 193 m2, respectively. Mean citywide tree cover at 30 m resolution is
4.5% in Denver and 16.2% in Seattle. As reported above, our predictive model improves
NLCD-TC in both cities. In Seattle, the predictive model increased citywide tree cover at
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30 m cells from 16.2 to 27.2%. The predictive model also increased citywide tree cover
estimates in Denver from 4.5 to 12.6% at the 30 m cell level.

Gains obtained from using corrected or high-resolution tree canopy cover inputs
relative to native NLCD-TC are complex and depend on the model. In Denver, rainfall
interception was estimated at 0.8 million, 2.1 million, and 17.2 million m3 of rainfall when
native NLCD-TC, corrected NLCD-TC, and high-resolution tree canopy data were used,
respectively (Table 4). By contrast, the heat mitigation model was less sensitive to tree
canopy input data, with estimated energy savings at 47,937, 51,289, and 59,140 mWh using
native, corrected, and high-resolution data, respectively. In both models for Denver, the
corrected NLCD-TC produces estimates closer to the high-resolution ones. However, gains
are relatively incremental and still substantially underestimate rainfall interception.

In contrast, using corrected NLCD-TC brings ecosystem service values for Seattle
much closer to those generated using high-resolution data (Table 4). Rainfall interception
for native NLCD-TC, corrected NLCD-TC, and high-resolution tree cover are 3.5, 5.4,
and 6.0 million m3 water, respectively. In other words, in Seattle, the amount of rainfall
interception increased from 58% of the total using native NLCD-TC to 89% using the
corrected version (accuracy gains were smaller for Denver). Corresponding values for
energy savings are 34,428, 40,280, and 51,335 mWh. When we stratified the results based
on land cover type (as a proxy for ecosystem types), we can see for which cities, ecosystem
services and ecosystem types, the correction has been most influential. Generally, the
predictive model improved results over the native input tree cover data, though large gaps
remained for a few ecosystem-ecosystem service types (e.g., energy savings in high-density
developed areas of Seattle and overall results of the Denver rainfall interception model,
Table 4). Overall, the corrected tree cover dataset is an important step forward in running
more accurate ecosystem services and accounting models in urban areas, though more
city-scale calibration data will be needed to assess model accuracy properly.
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Table 4. The results of urban ecosystem accounting models for Denver and Seattle using National Land Cover Database-Tree Canopy (NLCD-TC) 2011, high-
resolution tree cover data, and the corrected NLCD-TC.

Ecosystem
Accounting
Area (EAA)

Ecosystem
Service

Tree Cover Dataset
(as the Input)

Ecosystem Types (Land Cover)
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Denver CO

Intercepted
water (1000 m3)

Native NLCD-TC 2011 0 174 516 143 20 0 1 0 0 1 3 0 5 24 1 887 5%
Corrected NLCD-TC 0 265 1450 287 62 0 5 1 0 2 5 1 11 79 1 2169 13%

High-Resolution Tree Cover 32 3157 10,064 3172 432 2 7 4 1 4 37 3 37 222 5 17,178 100%

Energy Savings
(mWh)

Native NLCD-TC 2011 0 6975 30,417 8983 1446 0 23 0 5 3 16 0 1 66 3 47,937 81%
Corrected NLCD-TC 0 7688 31,974 9807 1675 0 24 1 5 3 21 0 2 85 3 51,289 87%

High-Resolution Tree Cover 0 6586 38,125 12,476 1881 0 14 0 2 4 6 0 3 41 2 59,140 100%

Seattle WA

Intercepted
water (1000 m3)

Native NLCD-TC 2011 0 527 1391 713 48 18 316 163 183 16 5 1 0 82 9 3475 58%
Corrected NLCD-TC 0 807 2147 1091 81 19 480 242 300 25 8 2 0 128 16 5354 89%

High-Resolution Tree Cover 0 908 2363 1290 84 22 549 293 319 27 10 2 0 141 16 6035 100%

Energy Savings
(mWh)

Native NLCD-TC 2011 0 19,082 12,767 883 17 231 513 254 49 0 0 0 55 6 572 34,428 67%
Corrected NLCD-TC 0 20,696 16,427 1136 22 289 590 308 58 0 0 0 69 9 675 40,280 78%

High-Resolution Tree Cover 0 22,189 25,083 1504 406 210 577 354 71 0 0 0 100 11 838 51,345 100%
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4. Discussion

As a nationwide dataset, NLCD-TC is the only available product for tracking urban
tree cover throughout every city in the US. However, its relatively coarse resolution makes
its accuracy and precision questionable in urban areas, especially where landscapes are
heterogeneous and have a wide variety of cover types. This analysis sought to more
systematically assess NLCD-TC error and possible error correction methods, in order to
help establish the usability of NLCD-TC for urban forest analysis applications. While
a series of papers evaluated errors associated with the first version of NLCD-TC (2001)
dataset [16,17,25], we are unaware of similar analyses for the two more recent NLCD-TC
datasets. Past studies (e.g., [16]) relied on a limited set of observations and called for more
research into exploring the magnitude of uncertainty of NLCD-TC.

We leveraged the availability of newer validation datasets and analytical techniques
to better understand tree canopy error in heterogeneous urban environments and evaluate
approaches to its correction and use in urban modeling. Access to high-resolution data
for multiple cities enabled us to train a decision tree algorithm on over 35 million sample
points to more accurately estimate tree cover. We suggest that a machine learning algorithm
can have two major benefits, by (1) improving the accuracy of the native dataset and
(2) producing a better error distribution centered around zero across urban landscapes (i.e.,
with better geographic balance). Our study also shows the value of additional datasets
(e.g., NDVI, climate, and building data) that can potentially be useful in generating more
accurate future NLCD-TC layers.

We found that NLCD-TC 2011 error is not evenly distributed across different ge-
ographies, particularly in highly heterogeneous environments like cities where 30 m grid
cells often encompass multiple land cover types. Stratifying the error across different
characteristics, such as density gradients, built versus undeveloped land, and ecoregions
showed that NLCD-TC tends to have a larger error (underestimation) in medium- and
high-density urban areas. In other words, the error distribution is skewed to the right. The
high frequency of zero error also is reasonable because NLCD-TC predicted so many cells
correctly. This finding aligns with those of previous analyses [16,17,25] and also a recent
study showing that NLCD impervious cover is typically overestimated in cities [41]. We
suspect that this error could be due to (1) shadowing from buildings in urban areas that
cause noise in the remotely sensed data; (2) more heterogeneous surfaces, which result in a
larger error when remotely sensed data are used for detecting tree canopies; and (3) the fact
that in cities, individual tree crowns are often isolated and small enough that they might
not be detected in classification of 30 m resolution pixels. We also evaluated NLCD-TC
data for 2016 and found the data to have similar error distribution and bias as the 2011 data,
which we expected since they used the same production process.

Given current data availability, there is an opportunity to build more sophisticated
models that incorporate urban heterogeneity to more accurately predict tree canopy cover
in cities. High-resolution land cover data are a cost-effective way to produce an intensified
sample at a spatial resolution capable of capturing the heterogeneity inherent in urban
landscapes. By combining high-resolution land cover with diverse datasets in a decision
tree model, we reduced the mean error from 8.1 to 0% and the mean absolute error from
13.5 to 10.6%, with an R2 value of 0.77. We found that climatic variables such as temperature
and precipitation and built environment variables such as buildings and development
density could improve the tree cover accuracy marginally but not considerably. Including
such variables in future algorithms is recommended.

This accuracy assessment informs future studies about the usability of NLCD-TC
data for ecosystem assessment models in urban contexts. NLCD-TC data might not be
an appropriate input for a model that cannot tolerate a 10–15% underestimation of tree
cover. In such cases, if high-resolution data are not available, our correction method may
be helpful. In our application of native, corrected, and high-resolution tree canopy data to
urban ecosystem accounting models, we found these models to be highly sensitive to the
quality of urban tree canopy layers. Understanding the impact of tree canopy data quality
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on a given model can be complex since these models often use nonlinear relationships, and
the relationship between the built environment and ecosystems is complex in cities [42]. For
example, in our heat mitigation model, energy savings will be realized if trees are located
close to buildings. If tree input data underestimate tree cover in cells with buildings, then
the results would be substantially affected. In this case, the accuracy of values in cells
without buildings would not matter. By contrast, the rainfall interception model quantifies
interception by trees regardless of their location in a city; interception was underestimated
more strongly in a city with a smaller and more dispersed canopy (Denver) than a larger
and more connected one (Seattle). These points highlight the importance of understanding
the spatial distribution of error.

Analyses relying on urban tree canopy data in cities should be aware of six points
raised by our study. First, as we show in Section 3.2, error rates are higher in certain
ecoregions, urban density, and cities than others. This makes efforts to correct tree canopy
data more important in some places than others. Second, when evaluating tree cover
in a region that includes developed and undeveloped land uses, error and uncertainty
will be distributed unevenly across the landscape. Researchers should consider an av-
erage underestimation error of 5% in undeveloped areas and 11% in developed areas
as a reasonable expectation when using the native (uncorrected) NLCD-TC products for
urban and regional scale analysis. Third, since there is also a systematic error in NLCD
impervious surface data [41], models that use both NLCD-TC and impervious data should
be aware of the potentially interactive effects of the respective errors of these datasets.
Fourth, while our predictive model removed bias in the data, the mean absolute error in
urban areas improved modestly (from 13.5 to 10.6%), so high-resolution data will remain
preferable when available. Fifth, if high-resolution data are available for a part but not all
of a study area, it may be useful to use the high-resolution data to train an algorithm to
correct NLCD-TC in the study area. Finally, urban models often benefit from being run at a
higher resolution than 30 m [43,44], though this may not always be possible in large-scale
comparative studies.

Machine learning algorithms offer the potential to improve the mapping of urban
areas [45], including estimates of tree cover elsewhere in the world, particularly in hetero-
geneous environments like cities and in data-poor regions. Datasets derived from satellites
like Landsat 8 and the Sentinel program can provide the basis for such studies. Adding
other data for population or housing density or building footprints (now available for an
increasing number of countries, including Australia, Austria, Canada, Germany, Tanzania,
Uganda, and the U.K. [46–48]) could improve estimates of tree cover. Opportunities may,
thus, exist to improve tree canopy cover estimates in cities for other parts of the world using
methods similar to ours, improving on global [49] or continental-scale [50] tree canopy
cover datasets. Now that more extensive climatic (e.g., temperature and precipitation),
socio-economic (e.g., housing density), and built environment data are available, machine
learning algorithms such as random forests can be used to combine such data to build
localized models. Such corrected datasets may provide a more accurate view of urban
processes that depend on tree canopy cover data as key model input, including urban
climate, climate resiliency, and air and water quality. Our work shows how understanding
the error distribution of tree canopy cover data and applying methods to improve its
accuracy can improve urban ecosystem accounting models, with examples for multiple US
cities and model types.

The most notable limitation of our study was that the city-level, high-resolution land
cover datasets that we used for validation were not evenly distributed across the US, nor
were they all available for the same year. A greater number of our samples were located in
the East, particularly in the mid-Atlantic region. Our evaluation would be more complete
if we had access to high-resolution data for more major cities in the Plains, Intermountain
West, and Pacific Coast regions. We believe our model could be improved using cities
more fully representative of diverse climatic regions, particularly with more examples
from hotter and drier regions. High-resolution land cover data for some cities come from
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different years than 2011 (Table 1). Given the need to incorporate data from cities spanning
as large a gradient as possible of climate/ecological zones as well as city size and age, and
because time series of high-resolution data do not frequently exist for cities, we included
data for a range of years. For 63% of our cities, that range is ±1 year from 2011, for 78%
of cities the range is ±3 years from 2011, and for 96% of cities the range is ±4 years from
2011. Though this may produce some error, annual tree cover change in cities is often
small, averaging 1% nationally over a five-year period though occasionally being as high
as 0.9% [51] to 2% [52] per year. Future work could also evaluate uncertainty datasets that
are produced alongside the NLCD-TC data.

5. Conclusions

In the absence of a nationwide dataset to characterize urban forests, the NLCD urban
tree canopy layer is often used by default to map urban trees where no alternative high-
resolution data exist or in cases where multi-city, regional, or national comparisons are
needed. Our analysis sought to assess the accuracy of NLCD-TC in urban contexts and
whether it can be improved through a multivariate modeling approach. Through validation
using high-resolution land cover datasets, our study shows how the error of the US NLCD-
TC 2011 is distributed in heterogeneous urban environments. This work and our subsequent
predictive model can be useful in improving tree canopy cover estimates to track changes
over time in urban tree canopies and associated ecosystem services in the absence of high-
resolution data. This may be particularly useful in cities lacking the resources for periodic
monitoring, whether small cities in developed nations like the US, or in the developing
world, where approaches analogous to ours could be developed and applied.

Author Contributions: Conceptualization, M.P.H., K.J.B. and A.R.T.; methodology, M.P.H.; software,
M.P.H.; validation, M.P.H. and K.J.B.; formal analysis, M.P.H.; investigation, M.P.H., K.J.B., A.R.T. and
J.P.M.O.-D.; resources, A.R.T. and K.J.B.; data curation, J.P.M.O.-D.; writing—original draft prepa-
ration, M.P.H. and K.J.B.; writing—review and editing, K.J.B., A.R.T. and J.P.M.O.-D.; visualization,
M.P.H.; supervision, K.J.B. and A.R.T.; project administration, A.R.T.; funding acquisition, A.R.T. and
K.J.B. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge the support of the NASA Biodiversity and Ecological Forecasting Program
(grant no. 80NSSC18K0341) for Heris’ time. Support for Bagstad’s time was provided by the US
Geological Survey Land Change Science Program. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the US Government.

Data Availability Statement: The code repository for regenerating the results is here: https://github.
com/mehdiheris/NLCD_Assessment (accessed on 1 November 2021).

Acknowledgments: We acknowledge the support of the NASA Biodiversity and Ecological Forecast-
ing Program and US Geological Survey Land Change Science Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Multi-Resolution Land Characteristics (MRLC) Consortium|Multi-Resolution Land Characteristics (MRLC) Consortium. Avail-

able online: https://www.mrlc.gov/ (accessed on 15 January 2018).
2. Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.a.; Wade, T.G. Accuracy Assessment of NLCD 2006 Land Cover and

Impervious Surface. Remote Sens. Environ. 2013, 130, 294–304. [CrossRef]
3. Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between Land Cover and the Surface Urban Heat Island: Seasonal

Variability and Effects of Spatial and Thematic Resolution of Land Cover Data on Predicting Land Surface Temperatures. Landsc.
Ecol. 2014, 29, 153–167. [CrossRef]

4. Zhou, W.; Troy, A. Development of an Object-Based Framework for Classifying and Inventorying Human-Dominated Forest
Ecosystems. Int. J. Remote Sens. 2009, 30, 6343–6360. [CrossRef]

5. Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic Simulation of Tree Effects in an Urban Water Balance Model 1. J. Am. Water
Resour. Assoc. 2008, 44, 75–85. [CrossRef]

6. Reistetter, J.A.; Russell, M. High-Resolution Land Cover Datasets, Composite Curve Numbers, and Storm Water Retention in the
Tampa Bay, FL Region. Appl. Geogr. 2011, 31, 740–747. [CrossRef]

https://github.com/mehdiheris/NLCD_Assessment
https://github.com/mehdiheris/NLCD_Assessment
https://www.mrlc.gov/
http://doi.org/10.1016/j.rse.2012.12.001
http://doi.org/10.1007/s10980-013-9950-5
http://doi.org/10.1080/01431160902849503
http://doi.org/10.1111/j.1752-1688.2007.00139.x
http://doi.org/10.1016/j.apgeog.2010.12.005


Remote Sens. 2022, 14, 1219 21 of 22

7. Nowak, D.; Heisler, G.M. Air Quality Effects of Urban Trees and Parks. Natl. Recreat. Park Assoc. Res. Ser. 2010, 1–44. Available
online: https://www.fs.usda.gov/treesearch/pubs/52881 (accessed on 29 November 2021).

8. Kovacs, K.F.; Haight, R.G.; McCullough, D.G.; Mercader, R.J.; Siegert, N.W.; Liebhold, A.M. Cost of Potential Emerald Ash Borer
Damage in U.S. Communities, 2009–2019. Ecol. Econ. 2010, 69, 569–578. [CrossRef]

9. Zheng, D.; Ducey, M.J.; Heath, L.S. Assessing Net Carbon Sequestration on Urban and Community Forests of Northern New
England, USA. Urban For. Urban Green. 2013, 12, 61–68. [CrossRef]

10. Nowak, D.J.; Appleton, N.; Ellis, A.; Greenfield, E. Residential Building Energy Conservation and Avoided Power Plant Emissions
by Urban and Community Trees in the United States. Urban For. Urban Green. 2017, 21, 158–165. [CrossRef]

11. McRoberts, R.E.; Liknes, G.C.; Domke, G.M. Using a Remote Sensing-Based, Percent Tree Cover Map to Enhance Forest Inventory
Estimation. For. Ecol. Manag. 2014, 331, 12–18. [CrossRef]

12. Nowak, D.J.; Greenfield, E.J. Tree and Impervious Cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [CrossRef]
13. Boyd, J.W.; Bagstad, K.J.; Ingram, J.C.; Shapiro, C.D.; Adkins, J.E.; Casey, C.F.; Duke, C.S.; Glynn, P.D.; Goldman, E.;

Grasso, M.; et al. The Natural Capital Accounting Opportunity: Let’s Really Do the Numbers. BioScience 2018, 68, 940–943.
[CrossRef]

14. Heris, M.; Bagstad, K.J.; Rhodes, C.; Troy, A.; Middel, A.; Hopkins, K.G.; Matuszak, J. Piloting Urban Ecosystem Accounting for
the United States. Ecosyst. Serv. 2021, 48, 101226. [CrossRef]

15. City of New York, Land Cover Raster Data (2017)–6in Resolution|NYC Open Data 2018; Accessed in May 2019. Available
online: https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns (accessed on 29
November 2021).

16. Greenfield, E.J.; Nowak, D.J.; Walton, J.T. Assessment of 2001 NLCD Percent Tree and Impervious Cover Estimates. Photogramm.
Eng. Remote Sens. 2009, 75, 1279–1286. [CrossRef]

17. Nowak, D.J.; Greenfield, E.J. Evaluating The National Land Cover Database Tree Canopy and Impervious Cover Estimates Across
the Conterminous United States: A Comparison with Photo-Interpreted Estimates. Environ. Manag. 2010, 46, 378–390. [CrossRef]
[PubMed]

18. Sander, H.; Polasky, S.; Haight, R.G. The Value of Urban Tree Cover: A Hedonic Property Price Model in Ramsey and Dakota
Counties, Minnesota, USA. Ecol. Econ. 2010, 69, 1646–1656. [CrossRef]

19. Landry, S.M.; Koeser, A.K.; Northrop, R.J.; McLean, D.; Donovan, G.; Andreu, M.G.; Hilbert, D. City of Tampa Tree Canopy
and Urban Forest Analysis 2016. 2018. Available online: https://waterinstitute.usf.edu/upload/documents/TampaUEA2016_
FinalReport-lowres.pdf (accessed on 29 November 2021).

20. Warnell, K.J.D.; Russell, M.; Rhodes, C.; Bagstad, K.J.; Olander, L.P.; Nowak, D.J.; Poudel, R.; Glynn, P.D.; Hass, J.L.; Hirabayashi,
S.; et al. Testing Ecosystem Accounting in the United States: A Case Study for the Southeast. Ecosyst. Serv. 2020, 43, 101099.
[CrossRef]

21. Huang, C.; Yang, L.; Wylie, B.; Homer, C. A Strategy for Estimating Tree Canopy Density Using Landsat 7 ETM and High
Resolution Images Over Large Areas. In Proceedings of the Third International Conference on Geospatial Information in
Agriculture and Forestry, Denver, Colorado, 5–7 November 2001.

22. Coulston, J.W.; Moisen, G.G.; Wilson, B.T.; Finco, M.V.; Cohen, W.B.; Brewer, C.K. Modeling Percent Tree Canopy Cover: A Pilot
Study. Photogramm. Eng. Remote Sens. 2012, 78, 715–727. [CrossRef]

23. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011
National Land Cover Database for the Conterminous United States–Representing a Decade of Land Cover Change Information.
Photogramm. Eng. 2015, 81, 345–354.

24. Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A New Generation
of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies.
ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [CrossRef]

25. Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 National Land-Cover Database for the United States.
Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [CrossRef]

26. U.S. EPA EnviroAtlas. Available online: https://www.epa.gov/enviroatlas (accessed on 15 February 2019).
27. O’Neil-Dunne, J.P.M.; MacFaden, S.W.; Royar, A.R.; Pelletier, K.C. An Object-Based System for LiDAR Data Fusion and Feature

Extraction. Geocarto Int. 2013, 28, 227–242. [CrossRef]
28. US EPA Ecoregions. Available online: https://www.epa.gov/eco-research/ecoregions (accessed on 6 May 2019).
29. Buyantuyev, A.; Wu, J. Urban Heat Islands and Landscape Heterogeneity: Linking Spatiotemporal Variations in Surface

Temperatures to Land-Cover and Socioeconomic Patterns. Landsc. Ecol. 2010, 25, 17–33. [CrossRef]
30. Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of Urban Heat Islands: Materials,

Utility Programs, Updates. Energy Build. 1995, 22, 255–265. [CrossRef]
31. U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook: Version 4 2019; US Geological Survey: Sioux Falls, SD, USA, 2019.
32. Microsoft. US Building Footprints; Microsoft: Redmond, WA, USA, 2018.
33. Heris, M.P.; Foks, N.; Bagstad, K.J.; Troy, A. A National Dataset of Rasterized Building Footprints for the U.S; US Geological Survey:

Reston, VI, USA, 2020. [CrossRef]
34. Heris, M.P. Evaluating Metropolitan Spatial Development: A Method for Identifying Settlement Types and Depicting Growth

Patterns. Reg. Stud. Reg. Sci. 2017, 4, 7–25. [CrossRef]

https://www.fs.usda.gov/treesearch/pubs/52881
http://doi.org/10.1016/j.ecolecon.2009.09.004
http://doi.org/10.1016/j.ufug.2012.10.003
http://doi.org/10.1016/j.ufug.2016.12.004
http://doi.org/10.1016/j.foreco.2014.07.025
http://doi.org/10.1016/j.landurbplan.2012.04.005
http://doi.org/10.1093/biosci/biy135
http://doi.org/10.1016/j.ecoser.2020.101226
https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns
http://doi.org/10.14358/PERS.75.11.1279
http://doi.org/10.1007/s00267-010-9536-9
http://www.ncbi.nlm.nih.gov/pubmed/20676888
http://doi.org/10.1016/j.ecolecon.2010.03.011
https://waterinstitute.usf.edu/upload/documents/TampaUEA2016_FinalReport-lowres.pdf
https://waterinstitute.usf.edu/upload/documents/TampaUEA2016_FinalReport-lowres.pdf
http://doi.org/10.1016/j.ecoser.2020.101099
http://doi.org/10.14358/PERS.78.7.715
http://doi.org/10.1016/j.isprsjprs.2018.09.006
http://doi.org/10.14358/PERS.70.7.829
https://www.epa.gov/enviroatlas
http://doi.org/10.1080/10106049.2012.689015
https://www.epa.gov/eco-research/ecoregions
http://doi.org/10.1007/s10980-009-9402-4
http://doi.org/10.1016/0378-7788(95)00927-P
http://doi.org/10.5066/P9J2Y1WG
http://doi.org/10.1080/21681376.2016.1266285
Default User
Highlight



Remote Sens. 2022, 14, 1219 22 of 22

35. Your Weather Service U.S. Climate Data (1990–2018). Available online: https://www.usclimatedata.com (accessed on 11 February
2019).

36. Manson, S.; Schroeder, J.; Van Riper, D.; Ruggles, S. National Historical Geographic Information System: Version 14.0; IPUMS:
Minneapolis, MN, USA, 2019. [CrossRef]

37. Troy, A.R.; Grove, J.M.; O’Neil-Dunne, J.P.; Pickett, S.T.; Cadenasso, M.L. Predicting Opportunities for Greening and Patterns of
Vegetation on Private Urban Lands. Environ. Manag. 2007, 40, 394–412. [CrossRef]

38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

39. United Nations Department of Economic and Social Affairs Statistics Division. System of Environmental-Economic Accounting-
Ecosystem Accounting: Final Draft; United Nations: New York, NY, USA, 2021.

40. Heris, M.P. Accuracy Assessment of National Land Cover Dataset Tree Cover Code. Available online: https://github.com/
mehdiheris/NLCD_Assessment (accessed on 29 November 2021).

41. Wickham, J.; Stehman, S.V.; Neale, A.C.; Mehaffey, M. Accuracy Assessment of NLCD 2011 Percent Impervious Cover for Selected
USA Metropolitan Areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101955. [CrossRef]

42. Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Meza Prado, K.A.; Arkema, K.K.; Bratman, G.N.;
Brauman, K.A.; Finlay, J.C.; et al. Social-Ecological and Technological Factors Moderate the Value of Urban Nature. Nat. Sustain.
2019, 2, 29–38. [CrossRef]

43. Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The Impact of Land Use/Land Cover Scale on
Modelling Urban Ecosystem Services. Landsc. Ecol. 2016, 31, 1509–1522. [CrossRef]

44. Rioux, J.-F.; Cimon-Morin, J.; Pellerin, S.; Alard, D.; Poulin, M. How Land Cover Spatial Resolution Affects Mapping of Urban
Ecosystem Service Flows. Front. Environ. Sci. 2019, 7, 93. [CrossRef]

45. Kerins, P.; Guzder-Williams, B.; Mackres, E.; Rashid, T.; Pietraszkiewicz, E. Mapping Urban Land Use in India and Mexico Using
Remote Sensing and Machine Learning; World Resources Institute: Washington, DC, USA, 2021.

46. Haberl, H.; Wiedenhofer, D.; Schug, F.; Frantz, D.; Virág, D.; Plutzar, C.; Gruhler, K.; Lederer, J.; Schiller, G.; Fishman, T.; et al.
High-Resolution Maps of Material Stocks in Buildings and Infrastructures in Austria and Germany. Environ. Sci. Technol. 2021, 55,
3368–3379. [CrossRef]

47. Jochem, W.C.; Tatem, A.J. Tools for Mapping Multi-Scale Settlement Patterns of Building Footprints: An Introduction to the R
Package Foot. PLoS ONE 2021, 16, e0247535. [CrossRef] [PubMed]

48. Microsoft Building Footprints. Available online: https://github.com/microsoft?q=building+footprints&type=&language=
(accessed on 7 March 2021).

49. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;
Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [CrossRef]
[PubMed]

50. European Environment Agency. Copernicus Land Monitoring Service-High Resolution Layer Forest Product Specifications Document;
Copernicus Team at EEA: Copenhagen, Denmark, 2017; p. 39.

51. Nowak, D.J.; Greenfield, E.J. Declining Urban and Community Tree Cover in the United States. Urban For. Urban Green. 2018,
32, 32–55. [CrossRef]

52. Treglia, M.L.; Acosta-Morel, M.; Crabtree, D.; Galbo, K.; Lin-Moges, T.; Van Slooten, A.; Maxwell, E.N. The State of the Urban Forest
in New York City; Zenodo: New York City, NY, USA, 2021.

https://www.usclimatedata.com
http://doi.org/10.18128/D050.V14.02019
http://doi.org/10.1007/s00267-006-0112-2
https://github.com/mehdiheris/NLCD_Assessment
https://github.com/mehdiheris/NLCD_Assessment
http://doi.org/10.1016/j.jag.2019.101955
http://doi.org/10.1038/s41893-018-0202-1
http://doi.org/10.1007/s10980-015-0337-7
http://doi.org/10.3389/fenvs.2019.00093
http://doi.org/10.1021/acs.est.0c05642
http://doi.org/10.1371/journal.pone.0247535
http://www.ncbi.nlm.nih.gov/pubmed/33630905
https://github.com/microsoft?q=building+footprints&type=&language=
http://doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
http://doi.org/10.1016/j.ufug.2018.03.006
Default User
Highlight

Default User
Highlight


	Introduction 
	Methods 
	Data 
	Dependent and Independent Variables 
	Predictive Model 
	Validation of the Predictive Model 
	Use Case: Running Corrected Data vs. Native NLCD-TC for Two Ecosystem Accounting Models 
	Code Availability 

	Results 
	General Error Distribution 
	Error Distribution across Different Landscape Characteristics 
	Predictive Model Performance 
	Validation of the Predictive Model in Denver, CO, and Seattle, WA, to Correct NLCD-TC Bias 
	NLCD-TC Data Correction: Effects on Ecosystem Accounting Model Results 

	Discussion 
	Conclusions 
	References

