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Abstract: The benefits of tree canopy in urban and suburban landscapes are increasingly 

well known: stormwater runoff control, air-pollution mitigation, temperature regulation, 

carbon storage, wildlife habitat, neighborhood cohesion, and other social indicators of 

quality of life. However, many urban areas lack high-resolution tree canopy maps that 

document baseline conditions or inform tree-planting programs, limiting effective study and 

management. This paper describes a GEOBIA approach to tree-canopy mapping that relies 

on existing public investments in LiDAR, multispectral imagery, and thematic GIS layers, 

thus eliminating or reducing data acquisition costs. This versatile approach accommodates 

datasets of varying content and quality, first using LiDAR derivatives to identify 

aboveground features and then a combination of LiDAR and imagery to differentiate trees 

from buildings and other anthropogenic structures. Initial tree canopy objects are then 

refined through contextual analysis, morphological smoothing, and small-gap filling. Case 

studies from locations in the United States and Canada show how a GEOBIA approach 

incorporating data fusion and enterprise processing can be used for producing high-accuracy, 

high-resolution maps for large geographic extents. These maps are designed specifically for 

practical application by planning and regulatory end users who expect not only high accuracy 

but also high realism and visual coherence. 
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1. Introduction 

Tree canopy provides many essential ecological services to human populations, both at local scales 

and globally. These benefits include multiple environmental functions: trees intercept rain, reducing the 

volume of stormwater runoff and, ultimately, water pollution [1,2]; they improve air quality by filtering 

pollutants [3]; they moderate the heat-island effect observed in areas with large expanses of impervious 

surfaces [2]; and they are an important part of the global carbon cycle, serving as a carbon sink [4].  

In addition to these direct environmental benefits, trees also have important effects on the social function 

of human communities, improving property values [5], reducing crime [6], and fostering a sense of place 

and safety [2,7], all factors integral to the perceived quality of life in urban and suburban communities. 

Although the importance of healthy trees to environmental function and community welfare is 

increasingly well-known, forests worldwide are threatened by a host of anthropogenic and natural agents. 

Direct habitat loss from development is a primary factor of anthropogenic change in urban environments, 

and indeed land-cover conversions contributed to recent tree-canopy declines in multiple American  

cities [8]. Among natural forces, numerous insect pathogens threaten trees in many parts of the world, 

including the Asian long-horned beetle (ALB) [9] and emerald ash borer (EAB) [10]. For example, 

thousands of trees in Worcester, Massachusetts, USA were removed after discovery of ALB in 2008, 

entirely eliminating mature tree cover in some neighborhoods [11]. Other threats include fungal 

pathogens [12], ice storms [13,14], and climate-induced drought and heat stress [15]; some of these 

stressors could produce interactive effects that exacerbate tree decline [12]. If current projections of 

climate change are realized, with some parts of the world experiencing more frequent and intense storms, 

droughts, and heat waves, increased tree mortality could produce observable forest diebacks [16]. 

Fortunately, cities in the United States and Canada are responding to these threats, developing ambitious 

programs to maintain existing trees and to expand urban forest cover. Perhaps the most notable is New 

York City’s Million Trees Program, which aims to plant a million trees during a 10-year period [17],  

but other cities with planting programs includes Washington, DC [18], and Philadelphia, PA [19]. These 

proactive cities have established specific goals for enhancing tree cover, usually expressed as a desired 

proportion of tree canopy relative to total land area (e.g., 40% tree canopy goal for Washington, DC). 

Of particular emphasis for these programs is the planting of “street” trees in road medians and along 

road edges, which help mitigate runoff volumes from impervious surfaces. As a matter of social justice, 

many programs also seek to address areas where tree canopy is most lacking; these areas are often among 

the poorest and most underserved neighborhoods. 

To be effective, tree-planting programs first need a comprehensive assessment of existing tree 

canopy, a baseline documentation that supports establishment of specific community goals. Traditional 

methods of manual photointerpretation combined with high-resolution imagery can provide informative 

city-wide estimates of tree cover [8], but these methods are laborious and do not highlight fine-scale 
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patterns. Similarly, excellent field-based methods exist for assessing tree species distributions and 

volumes [20,21], but they are generally sample-driven and lack adequate detail for entire municipalities. 

Moderate-scale tree canopy maps developed from remote sensing data, such as the 30-m National Land 

Cover Dataset (NLCD), provide informative regional assessments of forest cover, but they too lack the 

needed specificity for evaluation of neighborhoods with sparse tree canopy [22]. Ideally, tree canopy 

maps will be accurate to the scale of individual trees, permitting analysis of municipalities at a range of 

scales from broad political units (e.g., city, county, or state) to individual property parcels. 

In combination with high-resolution remote sensing data, geographic object-based image analysis 

(GEOBIA) offers a solution to this mapping challenge. It can accommodate a variety of data types, including 

LiDAR cloud point data, LiDAR derivatives (e.g., digital elevation models, normalized digital surface 

models), multispectral imagery (e.g., WorldView-2), and thematic GIS files (e.g., roads, building footprints), 

providing a data-fusion capability that maximizes the value of existing geospatial data investments while 

minimizing or eliminating the need to acquire new datasets. It also permits efficient processing of large 

datasets with enterprise-processing capabilities, analyzing multiple tiles simultaneously. 

Recent projects have demonstrated GEOBIA’s applicability to tree-canopy mapping using rule-based 

expert systems in which automated workflows efficiently convert high-resolution remote sensing data 

into GIS-ready products [23]. Some of the most densely-developed urban areas in the United States have 

been mapped with this methodology, including New York City [24] and Philadelphia [25]. It has proven 

similarly effective with larger geographic extents encompassing a spectrum of urban, suburban, and rural 

land uses, including every county in the state of Maryland [26]. All of these projects have achieved 

classification accuracies exceeding 90%, with some as high as 98%. They have also achieved a high 

degree of visual realism and coherence, aesthetic factors that are very important to map end users and 

that often cannot be equaled with pixel-based statistical classifiers [27]. 

Despite these successes, GEOBIA’s relevance to production-level land-cover mapping has not been 

widely documented. The GEOBIA literature has traditionally focused on development, refinement, and 

optimal use of segmentation algorithms [27]. This emphasis is vital to continued innovation in GEOBIA 

techniques and broadened application to natural resources assessment and management, but it overlooks 

GEOBIA’s capacity for accommodating huge datasets in short timeframes, producing output that covers 

large geographic extents and is intended for immediate use in practical settings. GEOBIA is more than 

an experimental approach; it is a well-tested and adaptable set of tools that geospatial analysts can use 

in production environments where the emphasis is on rapid conversion of data into information. 

This paper demonstrates a GEOBIA-based tree canopy mapping protocol developed by the University 

of Vermont Spatial Analysis Laboratory (SAL) in conjunction with the United States Department of 

Agriculture (USDA) Forest Service. The original impetus for this method, termed the Urban Tree 

Canopy (UTC) Assessment Protocol, was the growing need for high-resolution land cover maps that 

could accurately summarize tree canopy at the scale of individual property parcels, information that in 

turn could help document current conditions and prioritize tree-planting efforts in urban and suburban 

landscapes. It has proven to be a highly flexible method for characterizing the green infrastructure of 

cities, counties, and now entire states, accommodating input datasets of varying quality and quantity and 

providing the statistical accuracy and visual realism demanded by a diversity of stakeholders: planners, 

policy analysts, research scientists, elected officials, and citizens. It offers a model for producing 

accurate land cover data across large areas in a timely and cost-effective manner, data that will facilitate 
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legitimate time-series analysis as tree canopy changes in response to future environmental and social 

conditions. To date, this protocol has been performed for more than 70 communities in North America, 

yielding more than 1 trillion pixels of land cover data. 

2. Methodology  

2.1. Data Acquisition and Processing 

Limited financial resources are available to perform most UTC assessments. The SAL almost 

exclusively relies on existing geospatial datasets in its tree canopy mapping projects. This approach helps 

cities and counties demonstrate the utility of their GIS programs and remote sensing data collections, 

and makes many UTC assessments feasible by keeping project costs relatively low. Use of existing 

datasets also reduces or eliminates the time needed to acquire, process, and distribute new datasets. The 

input datasets for these projects are often highly variable in content and quality, reflecting the diverse 

motives and practices underlying data acquisition and processing. Unless datasets are systematically and 

irreparably flawed, however, most have some value in GEOBIA; sometimes even the approximate 

location of features can facilitate mapping, especially thematic GIS layers representing non-tree  

canopy landscape elements (e.g., road centerlines, utility transmission line rights-of-way). These layers 

can help refine the initial tree canopy classification by eliminating objects that are unlikely to represent 

actual trees. 

2.1.1. Multispectral Data 

Free or low-cost multispectral imagery exists for many parts of the United States. In particular, the 

National Agriculture Imagery Program (NAIP) provides 1-m ground sample distance (GSD), leaf-on aerial 

imagery for the 48 conterminous states [28]. Acquired for each state since 2002, usually at 2–3 year 

intervals, the standard NAIP acquisition is 4-band imagery (blue, green, red, and near-infrared).  

The 4-band datasets are preferred for tree canopy mapping because the near infrared band is necessary 

for calculating vegetation indices such as the normalized difference vegetation index (NDVI) [29]. When 

no higher resolution datasets are available, NAIP imagery is a useful input for discriminating vegetation 

from other land cover features, although locational errors can occur in areas with variable terrain [26]. 

Some municipalities also coordinate acquisition of high-resolution aerial orthoimagery (i.e., imagery 

orthorectified to accommodate relief displacement) for their planning and monitoring activities. The 

additional spatial detail often provided by these datasets further aids in vegetation discrimination, and the 

SAL has used orthoimagery with cell resolutions as high as 0.152-m GSD [24]. These data are typically 

acquired under leaf-off conditions to better facilitate the updating of cadastral maps. Often the local 

orthoimagery only contains the visible bands. In addition to these aerial imagery datasets, high-resolution 

satellite imagery has been available for some projects, such as WorldView-2 [30].  

Most multispectral datasets require relatively little processing before use in GEOBIA automated feature 

extraction. NAIP imagery and other datasets are often obtained as multiple separate tiles covering the area 

of interest, and the usual protocol is to mosaic the tiles into a single scene. If high-resolution satellite data 

are used, more intensive pre-processing is required, such as pansharpening and orthorectification. These 

preprocessing tasks are carried out using ERDAS IMAGINE. 
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2.1.2. LiDAR  

LiDAR point clouds in LAS format with ground point classified and a minimum of four returns are 

preferred for tree canopy mapping, providing maximum flexibility for examining the original LiDAR 

points and extracting necessary derivative products. More recent tree canopy mapping projects involve 

direct manipulation of LiDAR point clouds within GEOBIA software, which eliminates many of the 

LiDAR layer generation tasks listed below. Most projects to date, however, have relied on datasets 

derived from raster-based summaries of specific LiDAR components. Most notable is the normalized 

digital surface model (nDSM), which indicates the height of aboveground features such as trees and 

buildings. Various software packages are available for examining and filtering point clouds and 

exporting desired components to raster output, but the SAL usually uses Quick Terrain Modeler (Applied 

Imagery, Silver Spring, Maryland, USA) or SCALGO (Scalable Algorithmics, Aarhus, Denmark). These 

programs permit data extraction and a multitude of processing and output options. 

Original point clouds are not always available for individual projects, and sometimes the SAL relies 

on LiDAR derivatives produced by other entities. This scenario eliminates processing flexibility and 

quality control of the final products but reduces the labor devoted to data pre-processing. 

DEM  

When a classified LiDAR point cloud is available, the first processing step is development of a digital 

elevation model (DEM) that characterizes the ground topography. In Quick Terrain Modeler or a similar 

program, all LiDAR returns classified as ASPRS Class 2 (Ground) [31] are filtered and exported to a 

raster file, in IMAGINE format (.img). The gridding options are Mean Z (LiDAR elevation) and 

Adaptive Triangulation with no smoothing. The output cell resolution is set according to the nominal 

post spacing of the LiDAR point cloud, which has been at or near 1 m for most recent projects. 

DSM 

A similar LiDAR-derived layer is a digital surface model (DSM) that shows the topmost elements of 

aboveground features, including trees and buildings. It is created by filtering all non-spurious first 

LiDAR returns, regardless of classification. The gridding options are Max Z and Adaptive Triangulation 

with a smoothing filter (Radius, 1.00 Bins; Z Tolerance, 3 m). The output cell size is again the nominal 

post spacing. An example 0.457-m GSD DSM for Virginia Beach, Virginia, USA is shown in Figure 1b; 

for comparison, a true-color 0.152-m GSD orthoimage is shown in Figure 1a. 

DTM 

A third surface is a digital terrain model (DTM), which helps characterize the lower sections of  

three-dimensional objects. In contrast to the DSM, the DTM is created by filtering last LiDAR returns 

from the original point cloud, regardless of classification. The gridding options are the same as those used 

for the DSM and the final cell resolution is based on the nominal LiDAR post spacing. This surface 

capitalizes on LiDAR’s penetration of partially pervious features such as trees by one or more of the pulse 

returns; some of the returns capture topmost leaves and branches, some penetrate to interior branches and 

the tree bole, and others reach the ground. An example DTM is shown in Figure 1c. 
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nDSM  

After creating the initial LiDAR derivatives, a normalized DSM (nDSM) is created by subtracting the 

DEM from the DSM. This raster-processing step can be performed in many different programs;  

the SAL usually uses the Two Image Function option with the subtraction operator in ERDAS Imagine. 

The final product indicates the height of features aboveground, including the upper leaves and branches 

of tree canopy. An example nDSM is shown in Figure 1d. 

nDTM  

A normalized DTM (nDTM) is also created using the Two Image Function option, subtracting the 

DEM from the DSM. The resulting surface superficially resembles the nDSM, but for trees the layers 

capture fundamentally distinct elements in the vertical plane: the topmost features of the canopy (nDSM) 

versus a range of features from the canopy to mid-level branches to the tree bole (nDTM). For buildings, 

the nDSM and nDTM are essentially the same. An example nDTM is shown in Figure 1e. 

nDSM/nDTM Difference  

The difference between the nDSM and nDTM is a key modeling parameter in the preferred approach 

to tree canopy mapping, distinguishing highly variable, partially pervious features such as trees from 

impervious features with smooth surfaces, such as buildings. When the difference is high, indicating 

high variability in the vertical complexity of LiDAR returns, a feature is likely a tree; when the difference 

is low, suggesting smooth features, it is probably a building. The SAL usually calculates this layer in 

eCognition using Layer Arithmetics after importing the nDSM and nDTM layers, but it could be created 

in any raster-processing software. An example nDSM/nDTM Difference layer is shown in Figure 1f. 

Intensity  

LiDAR intensity values indicate the strength of individual returns and are extracted from point clouds 

by importing them along with all first returns, regardless of classification. The gridding options are the 

same as for the DSM. Intensity is generally not useful for discrimination of trees from other vegetation, 

but it does help distinguish impervious surfaces and thus can be helpful for removing developed features 

from consideration during classification. 

Mean Number of Returns  

The SAL’s current protocol focuses on derivation of nDSM and nDTMs, but for past projects other 

LiDAR derivatives have been useful for characterizing the texture of aboveground features. To create a 

layer showing the mean number of returns per unit area, all returns are imported regardless of 

classification and then summarized according to specified statistical criteria. In Quick Terrain Modeler, 

this operation is performed using Grid Statistics by specifying the variable as Number of Returns and the 

statistic as Mean. To ensure adequate statistical precision, a coarser resolution is necessary; as a rule of 

thumb, the output cell size should be three times the nominal post spacing. 
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Figure 1. Common source datasets for GEOBIA-based tree-canopy mapping. (a) A 0.152-m 

GSD true-color orthoimage for Virginia Beach, Virginia, USA. (b) A LiDAR-derived 0.457-m 

GSD digital surface model (DSM). (c) Digital terrain model (DTM). (d) Normalized digital 

surface model (nDSM). (e) Normalized digital terrain model (nDTM). (f) Difference 

between nDSM and nDTM. Trees are shown as high positive values (white); other 

aboveground features (e.g., buildings) have values equal to or near zero (black). 
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Z Deviation  

A similar LiDAR-derived texture layer focuses on variability in height values (Z). It can be created 

in Quick Terrain Modeler by specifying the variable as Z and the statistic as Standard Deviation, and the 

output resolution should also be three times the nominal post spacing. Both Z Deviation and Mean 

Number of Returns show trees as highly variable surfaces while buildings and other anthropogenic 

features are smooth. The SAL has found that the higher-resolution nDTM is a better indicator of object 

texture in GEOBIA modeling, but Z Deviation and Mean Number of Returns can be useful derivatives 

from lower-quality LiDAR datasets containing few returns per pulse. 

2.1.3. Thematic GIS Layers 

Many municipalities have developed detailed vector GIS datasets representing buildings, road 

surfaces, road centerlines, parking lots, sidewalks, hydrology, and other elements of the natural and built 

environments. These datasets can substantially aid development of tree canopy maps by identifying 

landscape features where trees are unlikely to grow or are heavily circumscribed by anthropogenic 

elements. For all projects, the SAL requests all pertinent datasets from the individual municipalities or 

downloads them from public GIS clearinghouses. It then reviews the metadata for these layers and layers 

themselves, assessing whether they are sufficiently accurate and informative for discriminating trees 

from other features. 

Occasionally, the SAL also develops its own thematic GIS datasets, usually to help distinguish  

easily confused landscape features. Examples include bare soil and utility rights-of-way. This work is 

performed in ArcGIS using heads-up digitizing techniques. In certain instances, existing vector datasets 

may be manually updated to reflect the conditions present in the source remotely sensed data. GEOBIA 

routines are often used to screen the vector data to highlight areas of possible change. The overall goal 

in these manipulations is not to produce stand-alone products for subsequent use by municipalities but 

rather to directly inform automated feature extraction. For example, the utility rights-of-way polygons 

that are developed are rough approximations of areas in which utility lines are present. The decision 

whether to create or modify thematic GIS layers is contingent on the quality of the available multispectral 

and LiDAR datasets: Are the remote sensing datasets sufficiently detailed to ensure high-accuracy 

GEOBIA output? If the answer is no or uncertain, it may be more efficient to first identify and map 

confounding landscape features for subsequent use in automated feature extraction. 

2.2. Automated Feature Extraction 

The SAL performs GEOBIA by building eCognition (Trimble Navigation Limited, Westminster, 

USA) rule sets that segment and classify input LiDAR and multispectral datasets, refining initial 

classifications with available thematic GIS datasets and context-based evaluation criteria. Rule-set 

development is an iterative process requiring many cycles of algorithm experimentation, testing, and 

refinement, proceeding to the highest possible level of accuracy and visual coherence until additional 

improvement is unnecessary or unprofitable (i.e., when much effort is needed to effect small, incremental 

refinements). As an expert system, it also requires a thorough understanding of the strengths and 



Remote Sens. 2014, 6 12845 

 

 

weaknesses of the input datasets; efficient rule sets maximize the value of high-quality layers while 

extracting as much information as possible from lesser-quality inputs. 

For tree canopy mapping, LiDAR derivatives are generally the most informative source inputs, 

driving the initial segmentation steps that create preliminary objects. As the SAL’s mapping protocol 

has evolved, many combinations of LiDAR derivatives have been used in object creation, along with 

various segmentation algorithms: Multiresolution, Multi-threshold, Quadtree Based, Spectral 

Difference, and others. Segmentation parameters (e.g., scale, shape compactness) have similarly varied 

by project, requiring experimentation to identify values that produce objects of the appropriate size and 

shape. In all cases, the goal has been to create objects that accurately and realistically depict tree canopy 

to the scale of individual, isolated trees (i.e., individual trees in contiguous forest patches are not mapped 

separately). When no LiDAR exists or available datasets have low quality, segmentation necessarily 

focuses on multispectral inputs.  

Classification of preliminary objects is optimally driven by a combination of LiDAR and 

multispectral criteria, with NDVI and Visual Brightness (i.e., sum of Red, Green, and Blue bands) among 

the most important spectral variables. Landscape context is also central to classification. The SAL’s 

UTC assessment protocol specifies development of a 7-class land-cover map: Tree Canopy, 

Grass/Shrubs, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. These classes 

are essential to end users of the data, to not only show the location of existing trees but also where new 

trees could theoretically be planted (e.g., lawns and shrubby areas, modifiable impervious surfaces such 

as parking lots, sidewalks, and road medians, etc.). However, these classes also help refine preliminary 

classifications by highlighting initial tree objects that are likely erroneous: linear objects rimming 

buildings; objects on elevated roadways; small, tall objects immediately adjacent to roads; etc. 

Accordingly, even in projects that need only the Tree Canopy class, one or more other classes are usually 

mapped on a preliminary basis to facilitate contextual evaluation of the initial objects. Where available, 

thematic GIS datasets are included in development of 7-class maps and context-based object evaluation, 

particularly building footprints and road surfaces. 

After preliminary objects have been created, classified, and refined, a final set of processing algorithms 

improves representation of individual tree canopy objects and their scene-wide logical consistency. 

Morphological routines (Morphology and Pixel-based Object Resizing) ensure that tree canopy objects are 

realistically depicted, smoothing angularities and filling small gaps, and clean-up routines eliminate very 

small objects. These steps help produce objects that best resemble trees as observed from above,  

a prerequisite for high end-user confidence regardless of the actual statistical accuracy.  

The data fusion capabilities of eCognition make tree canopy mapping possible; multiple inputs are 

needed to segment, classify, and refine objects, and to compensate for limitations in one or more datasets. 

They also present important logistical challenges, requiring importation and efficient processing of 

potentially billions of imagery pixels. Mapping for large study areas is greatly facilitated in eCognition 

by enterprise processing, which permits simultaneous rule-set operation on multiple tiles. Tiles are 

distributed across multiple processing cores using the eCognition Server. 

In early projects, enterprise processing required creation of a data stack containing all LiDAR and 

multispectral inputs, divided into reasonably sized tiles with exactly the same dimensions prior to 

importation with a customized import routine. Our more recent approach, in which LiDAR point clouds 

serve as the primary data source, relies on the tiling structure of the LiDAR data. This process avoids 
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extensive pre-importation tiling. Additional raster and vector layers are imported as part of the rule set 

at run time using the Create/Modify Project algorithm. 

Running time for enterprise processing varies by tile size, computing cores, and the number of 

software licenses; large geographic extents (e.g., metropolitan areas and counties) may require a day or 

more of continuous processing. This is no small accomplishment, however, considering that the volume 

of pixels handled by these mapping efforts is typically in the tens to hundreds of billions. Classified 

maps for each tile are exported to output raster files, usually in Imagine format. The tiles are then 

mosaicked into a single tree-canopy map (or 7-class land cover) covering the entire study area. 

2.3. Manual Corrections 

No map produced by automated feature extraction will achieve perfect accuracy; tree canopy is 

usually too variable, especially in densely developed areas with small street trees and other plantings 

that are easily confused with anthropogenic features (e.g., utility poles). To gain a final measure of 

accuracy and to eliminate obvious, non-systematic errors, the SAL reviews all draft tree canopy maps in 

ArcGIS and manually draws polygons around errors of commission and omission over the raster land 

cover. The scale at which maps are reviewed depends on the initial quality of the map, the time and labor 

costs needed, and the desired level of accuracy, but often it is about 1:3000. All reviews are performed 

by geospatial technicians who are well versed in the fundamentals of image interpretation and land cover 

mapping. A separate eCognition rule set is used to incorporate manual corrections into a final land cover 

map. This routine segments and re-classifies tree canopy objects according to the thematic correction 

polygons: erroneous objects are removed and omitted objects are added. 

2.4. Accuracy Assessment 

For projects requiring an accuracy assessment, an adequate number of random points are selected for 

a study area, following standard recommendations for per-pixel assessments [32]. Although various 

studies have attempted assessments more appropriate for GEOBIA-produced maps, no standards or 

rules-of-thumb have yet been developed that can be efficiently and consistently applied to tree canopy 

maps. The actual land cover at each random point is determined by reviewing high-resolution  

reference data, usually in ArcGIS. An error matrix is produced containing the user’s, producer’s, and 

overall accuracies. 

2.5. Retrospective Change-Detection Analysis 

After production of a high-resolution tree canopy map, it is possible to gauge recent changes in forest 

cover by performing retrospective change analyses. A retrospective analysis assumes that the best 

possible GEOBIA methods and high-resolution input datasets have been used to produce a map for a 

near-current time period. This map is then compared to data sources from an earlier time period and 

modified to accommodate changes in tree canopy: gain or loss. One method involves manual comparison 

of a high-resolution tree canopy map to earlier multispectral imagery, drawing polygons around gained 

or lost tree canopy in a GIS program. The polygons are then incorporated into a new raster layer that 

indicates change with three thematic classes: No Change, Gain, and Loss. As with manual corrections, 
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the SAL has found that the change-detection layer is most easily produced in eCognition by segmenting 

and classifying tree canopy for the latter time period using the thematic polygons. The driving factor 

behind this approach is the fact that the latter time period data is typically higher in quality (e.g., better 

horizontal accuracy and higher LiDAR point cloud density). 

An alternative automated method of change detection is possible when two time periods of interest 

have similar high-resolution input datasets, preferably LiDAR and its derivatives. In this method, tree 

canopy for the latter period is mapped first using GEOBIA and then subjected to manual review. After 

incorporating any necessary corrections, a separate eCognition rule set is created that maps tree canopy 

for the earlier time period and then compares it to the corrected map for the later period, creating the 

three thematic classes of interest (No Change, Gain, and Loss). Last, the draft change-detection layer is 

reviewed relative to the high-resolution inputs for the earlier time period and corrected as necessary. 

3. Results and Discussion 

3.1. Program Summary  

The SAL has conducted UTC assessments for more than 70 cities and counties in the U.S. and 

Canada, from New York City, USA to Honolulu, Hawaii, USA (Table 1), and including ecosystems as 

diverse as eastern temperate forests, chaparral, oak woodlands, and tropical dry forests. The input 

datasets for individual assessments have included billions of pixels, and some study areas have been as 

large as 2500 km2. The enterprise processing capabilities of eCognition made analysis of this huge 

volume practical, greatly expediting modeling for large cities such as New York City and Philadelphia 

and also for counties in Maryland, West Virginia, and elsewhere. Cumulatively, the 24 counties mapped 

for the state of Maryland included a land area of 25,640 km2 [26]. These projects encompassed multiple 

permutations of data availability, from municipalities with excellent LiDAR, multispectral imagery, and 

thematic GIS layers to others with multispectral data only. The available datasets also varied widely in 

data quality; some LiDAR datasets had holes or substantial locational offsets relative to other datasets, 

while certain multispectral datasets had relatively low spatial resolution, noticeable shading, and cloud 

cover. Similarly, thematic datasets were occasionally outdated, incomplete, or error-filled. GEOBIA’s 

data-fusion capabilities handled this variability, extracting usable information from individual layers and 

combining it in a coherent mapping protocol. 

Table 1. Tree Canopy (UTC) assessments conducted for selected cities and counties in the 

United States and Canada, with total area of each study area (km2), area of mapped tree 

canopy (km2), and tree canopy as a percentage of total area (%). 

City/County State/Province Country
Total Area 

(km2) 
Tree Canopy 
Area (km2) 

% Tree 
Canopy

Allegheny County Pennsylvania USA 1929 1061 55 
Baltimore Maryland USA 238 57 24 

Berkeley County West Virginia USA 511 210 41 
Brampton Ontario Canada 267 29 11 
Cambridge Massachusetts USA 18 5 27 

Caroline County Maryland USA 840 289 34 
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Table 1. Cont. 

City/County State/Province Country
Total Area 

(km2) 
Tree Canopy 
Area (km2) 

% Tree 
Canopy

Cuyahoga County Ohio USA 1190 444 37 
Des Moines Iowa USA 214 56 26 

Fairfax County (Region) Virginia USA 1146 596 52 
Hartford Connecticut USA 47 12 25 

Honolulu (Region) Hawaii USA 661 225 34 
Howard County Maryland USA 657 329 50 
Jefferson County West Virginia USA 549 203 37 

Kitchener Ontario Canada 137 30 22 
Lancaster Pennsylvania USA 2549 714 28 
Markham Ontario Canada 212 38 18 

Mecklenburg County North Carolina USA 1356 664 49 
Mississauga Ontario Canada 292 44 15 

Montgomery County Maryland USA 1313 630 48 
New Haven Connecticut USA 52 19 36 
New York New York USA 788 159 20 

Newark New Jersey USA 1213 182 15 
Peel (Region) Ontario Canada 1246 162 13 
Philadelphia Pennsylvania USA 369 70 19 
Pittsburgh Pennsylvania USA 151 60 40 

Prince Georges County Maryland USA 1291 646 50 
Richmond Hill Ontario Canada 101 25 25 

Rockville Maryland USA 35 15 44 
San Jose California USA 391 60 15 
Syracuse New York USA 66 18 28 
Toronto Ontario Canada 630 176 28 

Washington District of Columbia USA 177 55 31 
Virginia Beach Virginia USA 795 248 31 

Wicomico County Maryland USA 1035 321 31 
Worcester (Region) Massachusetts USA 337 192 57 

3.2. Case Studies 

3.2.1. Segmentation Workflows 

nDSM/nDTM with Building Footprints 

The overall workflow for tree canopy mapping is shown in Figure 2. To date, the most effective 

segmentation steps used by the SAL have relied on a combination of the nDSM and nDTM layers, first 

focusing on the height of features aboveground and then on their textural differences. The key to this method 

is an understanding of LiDAR returns and the different information they contain: the first-return nDSM 

indicates the height of all features, while the last-return nDTM captures objects lower in the vertical LiDAR 

profile, assuming they are partially pervious. Figure 3 shows an example processing sequence for a recent 

project in Virginia Beach, Virginia, USA. High-quality LiDAR acquired in 2012 was available for this 
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municipality, permitting development of 0.457-m GSD LiDAR derivatives (Figure 1). High-resolution 

orthoimagery (0.152-m GSD) acquired in 2013 was also available, although it contained only the visible 

bands (Figure 3a). The first step used a Multi-threshold Segmentation with the available nDSM to 

distinguish tall objects from short ones, specifying a threshold of 0.61 m (Minimum Object Size, 1) 

(Figure 3b). This low height threshold was necessary to capture the short, scrubby trees common in the 

Virginia Beach coastal environment. All tall objects, initially classed in the temporary category _Tall, 

were in turn segmented into meaningful sub-objects using a combination of a Quadtree Based 

Segmentation (Model, color; Scale, 40; weighted by multispectral bands, nDSM, nDTM, nDSM/nDTM 

Difference, and nDSM Slope, a slope layer created in eCognition from the nDSM) and a Multiresolution 

Segmentation Region Grow (Scale, 10; Shape, 0.3; Compactness, 0.8; weight values of 1 for nDSM, 

nDTM, nDSM/nDTM Difference, and nDSM Slope) (Figure 3c). Good thematic building footprints 

were available for Virginia Beach, so these were incorporated into the classification with a Chessboard 

Segmentation (Figure 3d). Tree canopy that overhangs buildings and other impervious surfaces plays an 

important role in runoff mitigation and temperature regulation, so the next step evaluated objects within 

thematic building footprints using nDSM/nDTM Difference; objects <0.61 m were assumed to be 

buildings rather than tree canopy (Figure 3e). To create a Tree Canopy class, the preliminary objects 

were error checked with routines evaluating building edges, roads, hydrology, utility line rights-of-way, 

and low LiDAR Intensity values, and their overall visual coherence and realism were improved with 

morphological smoothing routines (Figure 3f). The available orthoimagery did not contain a Near 

Infrared band, so Visible Brightness was used in lieu of NDVI whenever spectral criteria were needed 

in error checking and refinement. 

Figure 2. Processing workflow for tree canopy mapping, from initial segmentation through 

manual corrections. The initial segmentation in this workflow is based primarily on LiDAR 

derivatives (e.g., nDSM, nDTM). The objects generated as part of the initial segmentation 

are then subjected to an iterative process in which they are classified, segmented, and refined 

using morphology algorithms. As this iterative process progresses, the classification moves 

from using basic imagery and LiDAR metrics to contextual information defined by spatial 

relationships. After automated processing, manual corrections are performed to eliminate 

non-systematic errors. The workflow is modified as necessary to accommodate data inputs 

of varying content and quality (e.g., a usable nDSM exists but no nDTM is available). 
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nDSM/nDTM without Building Footprints  

The availability of thematic building footprints simplifies and expedites evaluation of overhanging 

tree canopy. However, these GIS datasets do not exist for every municipality, especially semi-rural or 

rural areas. If no building footprints are available for a study area or are poorly mapped or incomplete, 

additional routines focusing on nDSM/nDTM Difference are necessary, along with more extensive 

routines evaluating multispectral imagery and ancillary data (e.g., LiDAR Intensity). Figure 4 shows this 

process for Caroline County, Maryland, USA, an area for which 1-meter GSD LiDAR derivatives dating 

from 2005 were available. The available multispectral imagery included 1-meter GSD, 4-band NAIP 

acquired in 2011 (Figure 4a), an imagery dataset whose NIR band permitted calculation of NDVI. As with 

Virginia Beach, the initial segmentation step was a Multi-threshold Segmentation that differentiated tall 

from short objects; in this case, an nDSM threshold of 2 m (Minimum Object Size, 1) was necessary to 

adequately differentiate the study area’s taller trees from shrubs, creating the temporary category _Tall 

(Figure 4b). The secondary segmentation process was again a Quadtree Based Segmentation (Model, 

color; Scale, 40; weighted by spectral bands, nDSM, nDTM, nDSM/nDTM Difference, and nDSM 

Slope) followed by a Multiresolution Segmentation Region Grow (Scale, 10: Shape, 0.3; Compactness, 0.8; 

weight values of 1 for nDSM, nDTM, nDSM/nDTM Difference, and nDSM Slope). The lower 

resolutions of the input datasets produced larger objects relative to Virginia Beach, but these objects still 

provided meaningful divisions between trees and impervious surfaces (Figure 4c). The next step used 

the nDSM/nDTM Difference and spectral criteria to identify objects very likely to constitute trees; 

objects with a difference >2 m and NDVI > 0.1 were classified as _Candidate Tree Canopy (Figure 4d). 

Similarly, objects likely to be buildings were classified as _Candidate Buildings when the nDSM-nDSM 

Difference values were <0.2 m and NDVI < 0.1. Additional classification steps using nDSM-nDSM 

Difference, spectral criteria (NDVI, Visual Brightness), and object characteristics (Slope, Area, 

Adjacency) then mapped the remaining _Tall objects into either Tree Canopy or Buildings (Figure 4e). 

A set of error-checking and morphological smoothing routines produced a final tree canopy map  

(Figure 4f). The six-year temporal discrepancy between the LiDAR derivatives and the imagery was not 

ideal, producing higher rates of omission for recently-planted trees (e.g., street trees). Nonetheless, the 

data fusion approach maximized the value of existing datasets in capturing most of the county’s trees, 

and missing trees were subsequently added during manual corrections. 

Other LiDAR Derivatives  

An nDSM combined with other LiDAR derivatives can also be effective, including the Mean Number 

of Returns or Z Deviation. Like the nDSM/nDTM Difference layer, these derivatives help distinguish trees 

from other aboveground features by highlighting textural differences between surfaces; buildings usually 

have a low number of returns per unit area and the height values are precise (i.e., low Z Deviation), while 

trees have higher values of both. Among SAL projects, the most notable example of these statistics-based 

LiDAR derivatives was use of Z Deviation in high-resolution tree canopy mapping for New York  

City [24]. In general, however, use of these layers has been superseded by the nDSM/nDTM Difference 

layer; the original point cloud is necessary to produce all of these textural layers, so there is usually no 

need to produce the Mean Number of Returns or Z Deviation layers unless the number of returns per pulse 

is limited (i.e., when last returns are absent or sparse). The necessity of using a larger cell size when 

calculating means and standard deviations also reduces the value of these layers relative to nDSM/nDTM 
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Difference, which usually has a cell size comparable to the point spacing of the original LiDAR  

point cloud. 

Figure 3. Segmentation workflow for tree canopy mapping using a combination of an nDSM, 

nDTM, and thematic building footprints. (a) A 0.152-m GSD true-color orthoimagery for 

Virginia Beach, Virginia, USA. (b) Initial segmentation of tall objects (temporary class 

_Temp, in blue) using an nDSM. (c) Re-segmentation of tall objects. (d) Segmentation and 

classification of thematic building footprints (red objects). (e) Evaluation of thematic 

buildings for overhanging tree canopy using nDSM/nDTM Difference (overhanging tree 

canopy in red, uncovered building rooftops in orange). (f) Final Tree Canopy class after error 

checking and morphological smoothing. 
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Figure 4. Segmentation workflow for tree canopy mapping using a combination of an nDSM 

and nDTM. (a) 1-m GSD 4-band NAIP Imagery for Caroline County, Maryland, USA.  

(b) Initial segmentation of tall objects (temporary class _Temp, in blue) using nDSM.  

(c) Re-segmentation of tall objects. (d) Identification of objects very likely to be trees based 

on nDSM/nDTM Difference and NDVI (light green objects). (e) Differentiation of trees from 

buildings using nDSM/nDTM Difference, spectral criteria, object size, slope, and adjacency 

(tree canopy in dark green, buildings in red). (f) Final Tree Canopy class after error checking 

and morphological smoothing. 
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nDSM Only  

For some projects, the SAL did not have access to original LiDAR point clouds, necessitating use of 

derivatives created by other entities. When an nDTM or other layers that capture height-based textural 

differences are unavailable, spectral data, object size, and shape characteristics become more important. 

For example, the SAL had access only to a 0.305-m GSD nDSM for Fairfax County, Virginia, USA and 

adjacent municipalities, acquired in 2008, but 2-m GSD WorldView-2 multispectral imagery and an 

accompanying 0.5-m GSD panchromatic dataset were also available, acquired in 2011 (Figure 5a).  

The 8-band multispectral dataset contained two near infrared bands, permitting the use of NDVI in  

error checking routines evaluating initial tree canopy objects. Similar to other projects, tall features were 

initially identified using a Multi-threshold Segmentation with the available nDSM, based on a threshold 

of 6 m (Minimum Object Size, 1) (Figure 5b). Note that this threshold was 3 times the one used for 

Caroline County, Maryland; no single height criterion is appropriate for all study areas, and this 

parameter generally must be established through experimentation. Although available thematic GIS 

layers for building footprints were outdated for parts of the study area, they were incorporated into the 

initial _Tall class because at minimum they highlight the approximate location of most buildings  

(Figure 5c). Missing buildings isolated from other _Tall features were identified using a combination of 

NDVI (<0.3), Size (>112.4 m2), and Rectangular Fit (>0.75) (Figure 5d). Edges of buildings missed by 

the available thematic layers were similarly identified with NDVI (≤4), Size (>112.4 m2), and shape 

(Rectangular Fit > 0.5) criteria. Objects within all thematic or estimated buildings were then evaluated 

for the presence of overhanging tree canopy by performing a 2-step segmentation process:  

a Multiresolution Segmentation (Scale, 10; Shape, 0.2; Compactness, 0.7; weight value of 1 for the 

WorldView-2 panchromatic band) followed by a Spectral Difference Segmentation (Maximum Spectral 

Difference, 5; weight values of 1 for the Red, Green, and Blue bands and a value of 2 for the Near 

Infrared band). The objects created by this sequence were evaluated with multiple NDVI, Visible 

Brightness, Size, and Adjacency criteria (i.e., overhanging trees must be adjacent to already-identified 

tree canopy objects) (Figure 5e). Multiple spectral criteria were also used to eliminate erroneous draft 

tree canopy objects in other parts of the landscape (e.g., unmapped structures and utility poles), and the 

Tree Canopy class was finalized with morphological smoothing (Figure 5f). 

Multispectral Imagery Only  

LiDAR greatly improves the speed and accuracy of tree canopy mapping, but this data type is not 

always available for every project area. When necessary, the SAL has based tree canopy segmentation 

and classification entirely on multispectral data. A Multiresolution Segmentation weighted by the 

available multispectral bands produces meaningful objects, but it can be relatively slow computationally 

with very high resolution imagery (e.g., 0.15-m GSD imagery). In such cases, a Quadtree Based 

Segmentation followed by a Multiresolution Segmentation Region Grow may be a better option. 

Subsequent classification of draft objects usually depends on NDVI combined with texture variables 

such as GLCM Homogeneity (quick 8/11) or edge rasters derived using the Lee Sigma algorithm, 

permitting discrimination of vegetation from non-photosynthetic features and then highly-textured 

landscape elements (i.e., tree canopy) from more homogenous features (i.e., lawns and other grassy 

areas). However, the lack of height information generally introduces high rates of commission, meaning 

that many false tree canopy objects are captured by classification routines based exclusively on 
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multispectral imagery. These errors ultimately require more effort in manual review and editing, 

underscoring the value of LiDAR to tree canopy mapping. Several Maryland counties, for example, had 

significant gaps in the available LiDAR derivatives, necessitating tree canopy mapping routines focused 

on NAIP multispectral imagery. 

Figure 5. Segmentation workflow for tree canopy mapping using a combination of an nDSM 

and multispectral data. (a) 2-m GSD 8-band WorldView-2 imagery for the Fairfax County 

region, Virginia, USA. (b) Initial segmentation of tall objects (temporary class _Temp, in 

blue) using an nDSM. (c) Incorporation of thematic building footprints (white objects).  

(d) Classification of missing buildings using spectral, shape, and size criteria (yellow 

objects). (e) Evaluation of tree canopy overhanging buildings (draft tree canopy in light 

green, buildings in white, potential overhanging tree canopy in magenta). (f) Final Tree 

Canopy class after error checking and morphological smoothing. 
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3.2.2. Classification 

Object Features  

Initial segmentation of tree canopy objects is most effectively accomplished with LiDAR; this data 

type provides an unmatched capability to discriminate aboveground features from other landscape 

elements. As already demonstrated, however, classification usually requires a data fusion approach;  

a combination of LiDAR, spectral criteria, and thematic datasets provides the best method for 

discriminating actual tree canopy from the multitude of other tall features in urban and suburban 

landscapes. It is difficult, if not impossible, to highlight any single method or classification protocol; 

every project is different, necessitating a case-by-case evaluation of the available datasets and their 

ability to discern the floristic and physiognomic diversity of trees in a given study area. It is equally 

challenging to condense classification workflows into a brief list of illustrative steps. Some projects 

require long sequences of classification and re-segmentation steps that methodically work through the 

objects that constitute complex landscapes. Several trends are nonetheless apparent (Figure 2). NDVI 

remains one of the simplest and most effective spectral parameters for discriminating tree canopy objects 

from other features, along with Visible Brightness and the Near Infrared band. Basic geometry 

measurements are also informative, including Area, Length/Width, Compactness, Rectangular Fit, and 

Roundness. These measurements are especially helpful when error-checking draft tree canopy objects, 

identifying irregular or small objects that are unlikely to constitute actual trees. Texture measurements 

similarly help, especially when mapping trees in agricultural areas with strongly contrasting vegetation, 

but they can be computationally intensive. The textural indices GLCM Homogeneity (quick 8/11) and 

Edge Extraction Lee Sigma have proven most informative in distinguishing highly textured tree canopy 

from other vegetation types. 

Thresholds are generally preferred with direct object classification, providing the simplest, most 

intuitive method for evaluating features. In some cases, however, object variability cannot be adequately 

addressed by thresholds that assume a linear distribution. Fuzzy classifiers with multiple variables have 

proven effective in these instances, although they often require substantial experimentation to identify 

meaningful variable combinations and classification probabilities. In several Maryland counties,  

for example, some building types were differentiated from tree canopy using a class definition containing 

Area, Mean nDSM, Mean nDSM Slope, Mean nDSM/nDTM Difference, mean nDTM, and NDVI.  

The buildings captured by this fuzzy classifier possessed specific roofing materials and geometries that 

were not captured by other classification criteria. 

Contextual Refinement 

Although often neglected in published GEOBIA workflows [33], landscape context is essential to 

refinement of initial tree canopy objects, exploiting GEOBIA’s capacity to evaluate features relative to 

their neighbors and other objects in a scene (Figure 2). The goal is to use an object’s spatial relationship 

with nearby objects to gauge the likelihood that it represents actual tree canopy. For example, it is often 

difficult to error check small trees using spectral data alone because these features may have sparse 

canopies with low NDVI values. To address this issue in a draft tree canopy map for Wicomico County, 

Maryland, USA, the SAL used thematic centerline data in combination with an nDSM, NDVI, and 

adjacency criteria to identify utility poles, light standards, and other false canopy objects along roadways. 
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The initial map was created using 0.5-m GSD LiDAR derivatives (nDSM, nDTM, nDSM/nDTM 

Difference), acquired in 2011, and 1-m GSD NAIP multispectral imagery (4-band), also acquired in 

2011 (Figure 6a). A raster layer showing the distance to roads, as represented by an available road 

centerlines dataset, was created in eCognition using the Distance Map algorithm (Figure 6b).  

All aboveground features were mapped with the nDSM/nDTM segmentation workflow, and building 

footprints were used to distinguish structures from tree canopy (Figure 6c). Draft tree canopy near roads 

was then identified by highlighting _Candidate Tree Canopy within a mean distance of 25 m (Figure 6d), 

and these features were further filtered with two sequential steps: (1) selecting objects <50 m2 in area 

and surrounded by Unclassified; and (2) selecting from the reduced set objects with Maximum Pixel 

Value >13 m and NDVI < 0.3 (Figure 6e). These criteria identified small, tall objects with relatively low 

NDVI and wholly encompassed by ground-level land cover classes, a combination that is unlikely for 

recently planted street trees but entirely possible for structural features along roads. In the final 7-class land 

cover map, erroneous tree canopy surrounded by short vegetation was assigned to the Grass/Shrubs class 

(Figure 6f). 

Many additional routines are possible for error checking isolated tree canopy objects, and contextual 

analysis also can be applied to other landscape features when developing a comprehensive land cover 

map. In the SAL’s UTC assessments requiring 7-class land cover, context is often used to evaluate 

ground surfaces that are easily confused with multispectral data, including devegetated, compacted soils 

vs. concrete sidewalks (i.e., Bare Soil vs. Other Paved Surfaces) and recently turned agricultural soils 

vs. gravel farm roads (i.e., Grass/Shrubs vs. Roads/Railroads; agricultural fields are assigned to 

Grass/Shrubs in the UTC protocol). These land-cover distinctions are important to end users who need 

to know not only where trees are located but where additional trees could theoretically be planted, given 

favorable political, economic, and social circumstances. Context is where GEOBIA truly becomes an 

expert system; the human analyst must impose rules that translate observable landscape patterns into 

pertinent and usable information. 

3.2.3. Manual Corrections 

Automated feature extraction is performed iteratively to improve representation and accuracy of tree 

canopy objects, but ultimately the law of diminishing returns applies: how much time and money will 

be required to make small, incremental improvements? When all systematic errors have been removed 

from an automated classification, the SAL’s experience has shown that it is more efficient to conduct 

manual corrections (Figure 2). In this effort, the focus is shifted to non-systemic errors such as buildings 

and utility lines misclassified as trees or omitted street trees. The misclassified objects typically have 

non-standard attributes (e.g., a building with high NDVI and complex roof structure) that experienced 

image analysts can easily identify but automated algorithms miss. Interestingly, these errors have very 

little or no effect on statistical accuracy because automated feature extraction usually captures the 

overwhelming majority of trees in a given study area [25]. Qualitatively, however, the effect can be 

profound; non-technical end users tend to focus on realism rather than statistical accuracy, especially in 

areas that are well known to individual reviewers. An obvious omission or glitch in these areas will erode 

end-user confidence in the final product, even when the overall statistical accuracy is high. 
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Figure 6. Contextual error-checking of draft tree canopy along roads. (a) 1-m GSD 4-band 

NAIP imagery for Wicomico County, Maryland, USA. (b) Thematic road centerlines (red) 

were used to create a distance-to-roads raster. (c) Draft tree canopy (green) was mapped with 

the nDSM/nDTM segmentation workflow. (d) Tree canopy objects were identified by 

selecting objects within 25 m of roads (blue). (e) Erroneous tree canopy was identified by 

selecting objects with Area <50 m2, Maximum Pixel Value >13 m, NDVI < 0.3, and 

surrounded by ground-level features (Unclassified). (f) Final 7-class land cover map with 

erroneous tree canopy assigned to surrounding features. 

 

The labor devoted to manual corrections in SAL projects has varied widely, but where possible 25% 

or more of the total budget is reserved for manual corrections. More effort may be needed for study areas 

with no or low-quality LiDAR or for projects with specific accuracy requirements. For example, 

excellent LiDAR exists for New York City, but 65% of the total effort in its UTC assessment was 

allocated to manual review and editing, requiring 2025 person-hours of effort [24]. This substantial 

investment was justified by the need for high-resolution tree canopy maps appropriate for an 

epidemiological study of lung disease and air quality [34], and also by the challenge of mapping  
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newly-planted street trees in a dense urban environment. Other projects have not had the same 

compelling need for extensive manual review, and still others simply did not have a budget large enough 

to accommodate it. Nonetheless, the value of adding a final increment of quality via manual review 

cannot be overstated; in a practical setting with end users who have little or no knowledge of GEOBIA, 

it is critical to eliminate non-systematic or obvious errors that have no bearing on total accuracy but 

detract from visual quality. 

3.2.4. Accuracy Assessment 

Accuracy assessments for selected SAL tree canopy mapping projects are shown in Table 2. In all 

cases, accuracies exceeded 90% for Tree Canopy and were usually higher. Because of these high 

accuracies, combined with the need to limit costs for many projects, accuracy assessments are not 

performed for every SAL tree canopy mapping project; the time and money that could be devoted to a 

statistical analysis are instead devoted to manual corrections that improve the overall representation of 

tree canopy and avoid obvious errors, as described above. This emphasis is also partly a reflection of the 

difficulty in properly assessing GEOBIA maps with traditional per-pixel methods; a high overall 

accuracy surely provides useful information, but it does not gauge the degree of overlap or visual realism. 

Without standard and well-tested protocols for examining objects rather than pixels, and given the 

documented success of GEOBIA-produced tree canopy maps, accuracy assessments become a secondary 

consideration in projects with tight schedules and budgets. 

Table 2. Per-pixel accuracy assessments for selected Tree Canopy (UTC) assessments in the 

United States and Canada; user’s and producer’s accuracies refer to Tree Canopy class only. 

City/County State/Province Country
User’s 

Accuracy
Producer’s 
Accuracy 

Total 
Accuracy 

# Pixels 

All 24 Counties Maryland USA 99% 98% -- a 25,639,031,536
Baltimore Maryland USA 97% 96% 94% b 284,742,776 

Cuyahoga County Ohio USA 98% 96% 94% c 12,818,033,654
New York New York USA 98% 97% 98% b 33,917,474,301

Philadelphia Pennsylvania USA 97% 96% 95% b 3,984,373,375
San Jose California USA 97% 92% 93% d 4,160,591,793
a Tree Canopy only class in final land-cover map. b Total accuracy calculated for 7-class land-cover map: Tree 

Canopy, Grass/Shrubs, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. c Total 

accuracy calculated for 5-class land-cover map: Tree Canopy, Soil, Water, Buildings, and Roads/Paved.  
d Total accuracy calculated for 8-class land-cover map: Tree Canopy, Irrigated Grass/Shrubs, Non-irrigated 

Grass/Shrubs, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. 

3.2.5. Retrospective Change-Detection Analysis 

Manual Review of Earlier Time Period 

Multiple temporally distinct LiDAR datasets have not yet been collected for many municipalities in 

the United States and Canada, making automated change detection difficult. Theoretically, an automated 

approach could be used with two time periods captured by high-quality multispectral data, but in practice 

this method is too coarse; the detail provided by LiDAR is necessary to confidently map change as small 
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as individual street trees while minimizing the volume of manual corrections. However, manual review 

is a feasible option for change detection in moderately sized study areas where the later time period can 

be mapped with automated methods. 

This approach was necessary for an analysis of tree canopy loss precipitated by the Asian long-horned 

beetle (ALB) in Worcester, Massachusetts, USA and four adjoining towns, where thousands of trees 

were removed during the period 2008–2010 [11]. No LiDAR existed for either the pre- or post-removal 

periods, but 1-m GSD, 4-band NAIP datasets were available for both intervals. Preliminary tree canopy 

was mapped for the 2010 period with the Multispectral Imagery Only segmentation workflow, relying 

on a Multiresolution Segmentation (Scale, 25; Shape, 0.3; Compactness, 0.5; weight values of 3 for 

NDVI, 2 for Near Infrared and Red, and 1 for the Green band) and a sequence of classification criteria 

featuring textural (GLCM Homogeneity (quick 8/11)) and spectral (NDVI) thresholds. Exclusive reliance 

on multispectral imagery predictably resulted in overestimation of tree canopy, especially in shrubby 

areas with textures similar to trees, necessitating thorough manual review and editing. Tree canopy 

change was assessed manually by comparing the 2010 map (Figure 7a) to the 2008 NAIP (Figure 7b) 

and delineating losses and gains (Figure 7c). Tree loss across the entire study area was relatively small 

(−2%) but the spatial distribution of change was uneven; some neighborhoods suffered substantial losses, 

including nearly 70% of tree cover in north-central Worcester. Gains in tree canopy were negligible 

during the 2-year period. This study demonstrated that GEOBIA can assist retrospective change 

detection even when only sub-optimal input datasets are available, revealing patterns of loss that will 

inform subsequent damage control and remediation efforts. 

Automated Comparison of Two Time Periods 

Some communities have funded or received multiple LiDAR collections, making automated 

comparison more efficient than manual review in change detection. For example, an 8-year analysis of 

tree canopy change in Virginia Beach, Virginia, USA was based on 0.457-m GSD LiDAR acquired in 

2012 and a 0.61-m GSD dataset acquired in 2004. As described above, the 2012 tree canopy map was 

produced using the nDSM/nDTM segmentation workflow aided by 0.152-m GSD true-color 

orthoimagery dating from 2013. Initial tree canopy objects for the 2004 map were similarly based on the 

nDSM/nDTM workflow, with error checking dependent on the best available multispectral imagery  

(1-m GSD, 4-band NAIP acquired in 2008). In areas with recently exposed bedrock or soil visible in the 

2008 NAIP (i.e., very low NDVI), this temporal gap prompted error checking routines to erroneously 

remove some draft tree canopy objects, but otherwise the 2004 LiDAR produced a reasonable starting 

point for change detection. An additional eCognition routine directly compared the draft 2004 tree 

canopy to the reviewed and corrected 2012 layer, creating the No Change, Gain, and Loss categories. 

Small Gain objects (0–34.8 m2) wholly or partly enclosed by No Change objects were merged into No 

Change to reduce overestimation and to improve visual continuity. The draft layer was then thoroughly 

reviewed and modified as necessary, producing a final change detection map (Figure 8a). 

An estimated increase in tree canopy area of 7.6 km2 was observed across the study area during the 

period 2004–2012, with a gain of 33.1 km2 offsetting a loss of 25.6 km2. Overall, the relative gain was 

3.1%. Land cover changes produced the most noticeable losses, as contiguous blocks of trees were 

removed for residential or commercial development (Figure 8b), but established neighborhoods showed 

a patchwork of gains and losses; some trees were lost to attrition while new ones were planted. However, 
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the largest apparent source of gain was the growth of existing tree canopies, particularly along the 

margins of forest patches and around single, isolated trees (Figure 8c). Different acquisition parameters 

for the two LiDAR datasets may have contributed to the magnitude of the observed increase, but the  

8-year period was likely long enough to capture actual canopy growth. Change detection based on 

comparable LiDAR datasets was predictably more efficient for Virginia Beach, permitting analysis of a 

land area 2.4 times that of Worcester. Extensive quality control was still needed to fix errors in the 

change detection classes attributable to the 2004 tree canopy map, but subsequent change analyses  

will require much less effort if later time periods are mapped with similar GEOBIA techniques and 

LiDAR inputs. 

Figure 7. Retrospective change detection analysis for Worcester, Massachusetts, USA based 

on manual comparison of GEOBIA-produced high-resolution tree canopy map to earlier 

multispectral imagery. (a) 2010 Tree Canopy (green) superimposed on 1-m GSD  

4-band NAIP imagery from which it was modeled. (b) Manual comparison of 2010 Tree 

Canopy to 1-m GSD 4-band NAIP imagery acquired in 2008, with drawn lines representing 

tree canopy lost during 2-year period (red) and tree canopy gained (yellow). (c) Final  

change-detection layer superimposed on 2010 NAIP, with No Change (green), Loss (red), 

and Gain (yellow) classes. 
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Figure 8. Retrospective change detection analysis for Virginia Beach, Virginia, USA based 

on automated comparison of GEOBIA-produced high-resolution tree canopy maps for two 

time periods, 2004 and 2012. (a) 2004–2012 change-detection layer with No Change (green), 

Loss (red), and Gain (yellow), superimposed on 0.152-m GSD 3-band orthoimagery.  

(b) Loss attributable to land cover conversion from forest to developed land uses. (c) Gain 

along margins of tree canopy. 

 

4. Conclusions  

It is possible to move GEOBIA from a purely academic setting to a production environment, shifting 

focus from parameter experimentation to timely conversion of huge volumes of data into usable 

information. Administrators and planners at all levels of government need current and accurate  

tree canopy maps, but for many parts of the United States and Canada the available data are too coarse 

or limited in extent. GEOBIA techniques offer solutions to this information gap, facilitating 

simultaneous analysis of multiple pertinent inputs, including many high-resolution datasets already 

acquired at substantial cost but underutilized or overlooked. Many possible modeling approaches exist, 

and indeed the specific segmentation and classification procedures for individual projects must be 

tailored to the available datasets, time, funds, and processing capabilities; no single solution is optimal 

for all cases. 

LiDAR derivatives such as Normalized Digital Surface Models (nDSMs) and Normalized Digital 

Terrain Models (nDTMs) have consistently proven to be the most important remote sensing datasets for 

mapping tree canopy, permitting efficient discrimination of tall, highly textured objects from other 

aboveground features. However, GEOBIA can accommodate many different types of data and varying 

levels of quality, providing a robust method for differentiating trees from surrounding landscape features. 

Context is also key to tree canopy mapping; procedures that identify contrast with other features best 

approximate the way humans perceive variability among landscape features. Combined with GEOBIA’s 
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versatile data fusion capabilities, this contextual, expert system based approach provides both a 

quantitative accuracy and high visual realism that per-pixel, probabilistic methods cannot match. As 

more communities acquire second rounds of temporally distinct LiDAR, it will be possible to perform 

more retrospective change detection analyses that help document the effects of anthropogenic and natural 

environmental change. 

Production environment GEOBIA is feasible for many other landscape mapping efforts covering 

large geographic extents, including comprehensive land use/land cover (LULC) mapping, vegetation 

classification, wetlands delineation, agricultural monitoring, forest characterization, and river channel 

modeling. As always, overall quantitative accuracy will depend on the quality and resolution of the input 

imagery, LiDAR, and thematic datasets, along with a fundamental understanding of the features of 

interest and their relationship to other landscape objects. Where output products are expected to be highly 

scrutinized, manual editing helps remove non-systematic inconsistencies that affect end-user confidence, 

even if its effect on quantitative accuracy is negligible. GEOBIA thus integrates the old with the new, 

joining sophisticated automated feature extraction with time-tested elements of image interpretation into 

a single, efficient expert system.  
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