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ABSTRACT

Hot weather is a threat to human health, especially in cities, where urban heat islands (UHIs) are elevating

temperatures already on the rise from global climate change. Increased vegetation can help reduce temperatures

and exposure to heat hazards. Here, an ensemble of geographically weighted regressions (GWR) on land surface

temperature (LST) is conducted for May–October to estimate potential LST reductions from increased vege-

tation and to assess the effect of temperature reductions among vulnerable populations in Cleveland, Ohio.

Possible tree canopy increases are applied to the results, and it is found that LST reductions can range from 6.48 to
0.58C for May–October and are strongest fromMay to July. Potential LST reductions vary spatially according to

possible canopy increases and are highest in suburban fringe neighborhoods and lower in downtown areas.

Among populations at high heat-related health risks, the percentage of the population 65 years of age or older in

Cleveland is negatively associated with LST, while percentages of Hispanics and those with low educational

achievement are most positively associated with higher LST. The areas that have a high percentage of Hispanic

also have the lowest potential temperature reductions from increased vegetation. Neighborhoodswith the highest

potential temperature reductions had the highest percentages of whites. Three subpopulations associated with

high heat health risks are negatively correlated (African Americans and the elderly) or not correlated (persons

living in poverty) with LST, and the relationships to LST reduction potential for all three are not statistically

significant. Estimates of the effect of vegetation increases on LST can be used to target specific neighborhoods for

UHI mitigation under possible and achievable policy-prescribed tree canopy scenarios in Cleveland.

1. Introduction

Exposure to high summertime temperatures is a sig-

nificant threat to human health, especially in cities, where

urban heat islands (UHIs) are elevating temperatures

already on the rise from global climate change. Heat-

retaining, impervious land covers like paved roadways

and unvegetated surfaces and alterations to wind and

energetic flows from vertical surfaces of buildings ele-

vate local temperatures in UHIs. These anthropogenic,
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regional-scale transformations to natural land covers

are known to be responsible for the UHI microclimatic

signature of cities (Oke 1997; Arnfield 2003; Li and

Bou-Zeid 2013). Although the classic UHI signature is

an observable temperature gradient between the urban

built environment and surrounding rural areas (Balling

and Brazel 1987), UHI magnitudes within cities show

significant spatial heterogeneity and are driven by land

use/land cover and density of the built environment

(Ruddell et al. 2010).

The sensitivity of populations to extreme heat-related

illness (e.g., morbidity) and death (e.g., mortality) is

influenced by socioeconomic characteristics (e.g., eth-

nicity, poverty, linguistic isolation, and old age), air con-

ditioner use, preexisting medical conditions, the presence

or absence of heat-mitigating vegetation, and age-based

or other forms of social isolation (Reid et al. 2012; Harlan

et al. 2006, 2013; White-Newsome et al. 2014b,a). Thus

mitigating high temperatures from UHIs is a desirable

public health goal. Mitigating high temperatures can

also address environmental justice/equity issues be-

cause of the prevalence of race- and class-based dis-

parities in adverse heat health outcomes. For example,

across the United States, Hispanic, African American,

and Asian populations often live in neighborhoods

with high percentages of impervious surfaces and no

tree canopy, two land covers associated with higher

heat risks (Jesdale et al. 2013). Adverse heat health

outcomes, such as mortality (e.g., Johnson and Wilson

2009; Kaiser et al. 2007; Harlan et al. 2013; Hondula et al.

2012; Yip et al. 2008) and morbidity (e.g., Hattis et al.

2012; Johnson and Wilson 2009), are found to be higher

among minority and impoverished communities.

Although the degree to which UHIs affect heat health

outcomes is not well known (Stone et al. 2014), model-

ing suggests that vegetation-based interventions to

reduce urban temperatures can potentially reduce heat-

related mortality and morbidity (Boumans et al. 2014;

Stone et al. 2014). Reducing UHI magnitudes can also

reduce demand for air conditioner use, which provides

the added benefit of reducing heat waste that feeds back

as anthropogenic heat into the UHI. In addition, reduced

air conditioner use can lower demand for electricity,

which can lead to lower emissions of carbon dioxide and

other greenhouse gases and copollutants (Salamanca

et al. 2014). Lower urban temperatures can also reduce

ozone formation from photochemical interactions of

volatile organic compounds and other ozone precursors

in the lower atmosphere of cities (Oke 1997), which, in

some cases, is known to exacerbate heat-related mor-

tality (Filleul et al. 2006; Pattenden et al. 2010). The

potential public health and emissions reductions ben-

efits of mitigating extreme heat and UHIs is motivating

the development of increased climate resilience in many

cities across North America: many cities in the United

States are responding to increases in the number of

extreme heat days by adopting heat-mitigation plans as

part of climate resilience and adaptation planning

(Hewitt et al. 2014).

UHI mitigation typically consists of reducing the

amount of solar radiation that is absorbed by impervious

surfaces. Two common mechanisms for achieving this

include altering surface covers by increasing the fraction

of total solar radiation reflected (i.e., albedo) and in-

creasing vegetative cover. Increasing albedo can reduce

the amount of heat absorbed during daytime hours,

thereby reducing emitted nighttime radiation from im-

perviousmaterials. Albedo can be increased through the

application of highly reflective vertical and horizontal

materials. Increasing vegetation can provide shading

and transpirational cooling, two ecosystem services

that can reduce heat loads in cities. Canopied vegeta-

tion, however, has different day and nighttime effects.

Buyantuyev and Wu (2010) suggest that, since vegeta-

tion is cooler during the day, this effect may continue

into the night and result in lower temperatures. How-

ever, at night, heat can be trapped under the vegetation

canopy and radiated back into the environment, increas-

ing nighttime warming. Although there is uncertainty re-

garding day versus night effects, vegetated spaces in cities

have been shown to create localized park cool islands

(PCI), countering the effect of the UHI (Chow et al.

2011; Declet-Barreto et al. 2013). Microclimate simu-

lations have shown that, under certain synoptic climate

conditions, PCIs can have localized ‘‘spillover’’ advective

cooling effects that extend beyond vegetated land covers

(Declet-Barreto et al. 2013).

Vegetation provides two principal ecosystem services

that affect surface and near-surface temperatures. Tree

canopies absorb and reflect solar radiation, effectively

shading surfaces from direct radiant energy contact.

Transpirational cooling works as liquid water evapo-

rates to a gas in the cells of leaves (Declet-Barreto et al.

2013). Remote-sensing-based approaches to UHI miti-

gation have shown that the extent and magnitude of

these ecosystem services are dependent on local climate,

land use/land cover, water, and the extent and compo-

sition of vegetation (Jenerette et al. 2007; Imhoff et al.

2010; Voogt and Oke 2003).

Estimating land surface temperature (LST) from

remote-sensing platforms allows researchers to assess

intraurban variability in surface UHI intensities, a spa-

tial scale improvement over the often sparse and irreg-

ular distribution of weather station networks in many

metropolitan areas. The increased spatial detail comes

with a loss in the temporal resolution of temperature
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data, as estimates are limited to the time that a space or

airborne sensor flies over the study area. In spite of these

limitations, LST has been shown to correlate to heat

vulnerability at the neighborhood scale (Johnson et al.

2009; Buscail et al. 2012; Hondula et al. 2012; Harlan et al.

2013), modulate lower-atmosphere urban temperatures,

and be a primary factor in determining human comfort in

cities (Voogt and Oke 1998). Furthermore, LST has im-

portant heat and public health applications, as it can be

useful for assessing the characteristics of temporally sta-

ble built environments that can shape human exposure to

heat and also for targeting heat-health interventions

(White-Newsome et al. 2013).

The relationship between LST and vegetation is well

established: vegetation is a known regulator of temper-

atures. The normalized difference vegetation index

(NDVI)—an indicator of photosynthetically active

vegetation (Tucker 1979)—is a common measurement

of vegetation derived from remotely sensed data. Ma

et al. (2008) and Sun and Kafatos (2007) have reported

temporally dependent linear relationships between LST

and NDVI at the urban and continental scales and that

these relationships are inverse and stronger in the summer

than in winter. In Phoenix, Arizona, vegetation cover has

been found to contribute to amaximum reduction of 258C
over bare soil in summertime Landsat-derived summer-

time LST (Jenerette et al. 2011), and, among social and

built-environment characteristics, the largest influence

on LST reductions was a soil-adjusted vegetation index

similar to NDVI (Jenerette et al. 2007). In Shanghai,

China, a regression conducted by Yue et al. (2007)

found potential LST reductions of up to 128C from fully

vegetated landscapes as measured by NDVI derived

from the Landsat ETM1. A study in cities in temperate

broadleaf and mixed forest biomes—including coastal

cities like Baltimore (Maryland), Boston (Massachusetts),

Milwaukee (Wisconsin), New York (New York), and

Cleveland (Ohio)—consistently found inverse relation-

ships between NDVI and LST across urban, suburban,

and rural land covers (Imhoff et al. 2010). Onishi et al.

(2010) simulated LST reductions from planting grass and

trees (based on NDVI) in parking lots in Nagoya, Japan,

finding slight overall LST reductions. These studies pro-

vide evidence that vegetation can regulate LST.

In this paper, we evaluate the role of increased cano-

pied vegetation distributions in reducing high summer-

time temperatures in neighborhoods in urban areas of

Cleveland, Ohio. We use remotely sensed data to quan-

tify the relationship between daytime land surface

temperature and vegetation. We conduct an ensemble

of geographically weighted regressions (GWR) on land

surface temperature and vegetation to estimate the ef-

fect of vegetation on surface temperatures across the

city. Based on existing and possible canopy increases

from a tree canopy assessment conducted by Cuyahoga

County’s planning agency, we estimate surface temper-

ature reduction potential in Cleveland neighborhoods.

Finally, we evaluate our potential LST reductions against

socioeconomic and demographic variables associated

with heat health risks to identify potential LST reductions

among at-risk vulnerable populations.

2. Study area

Cleveland is a city of 390 113 [population density

13 227.1 persons km22 (U.S. Census Bureau 2014)] lo-

cated in northeastern Ohio in the U.S. Midwest (Fig. 1).

The city lies along the southern shore of Lake Erie, is

the second most populated city in the state, and serves

as the county seat for Cuyahoga County. Cleveland’s

climate is characterized as humid continental [Köppen
Dfa (Kottek et al. 2006)].Urban tree canopy inCleveland

represents 19% of the city’s total area, well below the

average for Cuyahoga County (37.6%; Cuyahoga County

Planning Commission 2013a). In comparison to other

Midwestern cities, Cleveland has the least amount of

parkland area per resident at 27.9m2, versus Columbus,

Ohio (59.1m2), Cincinnati, Ohio (58.7m2), Milwaukee,

Wisconsin (66.0m2), and Pittsburgh, Pennsylvania

(35.6m2; Cleveland City Planning Commission 2014b).

During days matching acquisition dates of Landsat

scenes used in our analysis, minimum and maximum

temperatures were 21.08C (8 March 2010) and 33.38C
(3 September 2011), respectively (see supplemental ma-

terial 1) (NCEI 2015). Sheridan et al. (2009) estimate that,

annually, Cleveland experiences, on average, 11.1 days

with ‘‘oppressive’’ air masses associated with heat-related

mortality. Bobb et al. (2014) estimate that a projected

upward shift of 2.88C in summertime daily temperatures

in Cleveland could result in 43.6 excess deaths per year.

Longitudinal heat mortality studies have found that in

many cities around the globe—including Cleveland—

heat-related mortality has decreased over time, an ad-

aptation that is thought to be explained in part by in-

creased prevalence of air conditioners (Bobb et al. 2014;

Gasparrini et al. 2015). Indeed, in Cleveland, Gasparrini

et al. (2015) estimated a drop in relative risk of heat-

related mortality from approximately 1.4 in 1993 to

approximately 1.1 in 2006. Notwithstanding observed

decreases, heat-related health impacts in Cleveland and

other locations persist, and uncertainty about how these

will evolve under a changing climate remains. There-

fore, improving strategies for reducing heat-related

health risks and decreasing preventable mortality and

morbidity from extreme weather is a desirable public

health goal.
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Cleveland has a long history of racial segregation

demarcated informally by the Cuyahoga River and to-

day remains one of the most segregated cities in the

United States (Frey and Myers 2005). Like many other

American cities during the postwar period, Cleveland

experienced high rates of ‘‘white flight’’ (the self-removal

of white residents from nonwhite populations), contrib-

uting to segregation of African American and white

populations (Galster 1990). In 2010, African American

residents made up the majority of the city’s population

(53.3%), followedbynon-Hispanicwhite (33.4%),Hispanic

(10.0%), andAsian populations (1.8%,U.S.CensusBureau

2014). Twelve percent of the Cleveland population is 65

years of age or older (U.S. Census Bureau 2014). A large

fraction of the population is under poverty, at 34.2%

(Minnesota Population Center 2016a,b), and the pres-

ence of mechanical cooling [i.e., air conditioners (AC)]

in residential parcels is not prevalent [on average, only

12.9% of all residential parcels have either central or

‘‘through-wall’’ AC units (Cuyahoga County Planning

Commission 2013a)]. Spatial distributions of selected

race/ethnicity and socioeconomic status variables are

mapped in Fig. 2. Figures 2a–c highlight the segregated

racial structure of the city; Figs. 2b–g show distributions

of variables associated with higher heat-related risks in

statistical planning areas (SPAs).

3. Methods and data

a. Data on land surface temperature and vegetation

Urban climatology has identified different types of

UHIs according to the component of the urban envi-

ronment under study: that is, urban canopy layer, ur-

ban boundary layer, surface, and subsurface, (Oke

2006; see review in Heisler and Brazel 2010). In this

paper, we focus on the daytime Cleveland UHI as

measured at the urban surface. Temperatures at the

urban surface, also known as ‘‘skin’’ temperatures,

FIG. 1. VPTC in SPAs in the Cleveland, Ohio, study area. The Cleveland International and Cleveland Burke Lakefront Airports are

indicated on the map.
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represent upper surface temperatures of urban land

covers like buildings, streets, and lawns (Heisler and

Brazel 2010) and are typically measured through

handheld, air- or spaceborne remote sensors (Gallo et al.

1993). In this study, we use high-resolution, spatially

contiguous data from the Landsat satellite imagery

program to characterize the relationship between LST

and NDVI.

Skin temperatures estimated from satellite data are

subject to larger day-to-day variability than NDVI-based

vegetation estimates, and heterogeneity in urban land

covers introduces large spatial variability in theLST–NDVI

FIG. 2. Race/ethnicity and socioeconomic variables in statistical planning areas in Cleveland associated with

disparities in extreme heat vulnerability.

OCTOBER 2016 DECLET - BARRETO ET AL . 511

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC



relationship. To address this, we generated an ensemble

of 12 daytime Landsat Thematic Mapper (TM) scenes

from May through November of 2009–11 and calculated

LST and NDVI for each Landsat scene. Level 1T images

acquired by the TM instrument onboard the Landsat 5

satellite were obtained from USGS (2016) and used to

estimate LST and NDVI. The TM sensor records radi-

ance information in the visible through shortwave in-

frared portions of the electromagnetic spectrum in six

spectral bands (0.45–2.35mm) at 30mpixel21 nominal

ground resolution. Emitted energy in the midinfrared

wavelengths (10.4–12.5mm) is acquired at 120mpixel21,

but for convenience this spectral band is resampled and

delivered by USGS at 30mpixel21 resolution. We pro-

cessed 12 images (Path/Row: 19/31) with no or minimal

cloud cover spanning the spring, summer, and fall seasons

(25 June 2009, 27 July 2009, 13 September 2009, 8 March

2010, 27 March 2010, 31 August 2010, 3 November 2010,

19 November 2010, 1 July 2011, 3 September 2011,

5 October 2011, and 6 November 2011). Occasional

clouds with shadows were manually masked out. The

atmospheric component of reflected and emitted energy

in each image was modeled and removed using the

MODTRAN-based atmospheric correction in ERDAS

Imagine 2014 image processing software. LST was cal-

culated from the atmospherically corrected midinfrared

band 6 of the image as a numerical solution to the Planck

temperature–emissivity equation with assumed constant

emissivity « of 0.98. NDVI was calculated using two at-

mospherically corrected TM bands as follows:

NDVI5 (NIR2Red)/(NIR1Red), (1)

where near-infrared (NIR) is TM band 4 (0.76–0.90mm),

and Red is TM band 3 (0.63–0.69mm) of Landsat. The

index range is 61.0, and we recoded negative values to

zero (less than one percent for all but one Landsat

scene) in order to avoid negative values in regression

analyses.

The city boundary GIS file (Cuyahoga County

Geographical Information Systems 2016) was used to

extract pixels within our study area. Because of the

large number of pixels in each scene (224 839) and to

account for spatial variability in the LST–NDVI re-

lationship, we conducted 1000 correlation iterations for

each scene using randomly sampled pixels (n 5 5000),

after Jenerette et al. (2011). Figure 3 shows LST–NDVI

correlation coefficients. Each data point represents the

mean coefficient for the group of 1000 iterations con-

ducted for each Landsat scene (average standard error of

themean for each groupof 1000 iterationswas 4.53 1024).

As in previous studies (e.g., Jenerette et al. 2011; Boumans

et al. 2014), the LST–NDVI relationship is strongest in the

summer months and weakest in the winter. Based on

Fig. 3, we selected Landsat scenes from May through

October—excluding the 27 July scene because of the

low r2—for a geographic regression analysis, described in

the next section. Because of the presence of surface water

from the Cuyahoga River and other streams in Cleveland,

we identified surfacewater using theUSGSNational Land

Cover Database 2011 (Jin et al. 2013) and eliminated

overlapping Landsat observations from the analysis.

b. Data on heat-sensitive populations and
neighborhoods

We extracted variables in census block groups

(CBGs) from the 2010 U.S. Census and American

Community Survey 2006–10 5-yr estimates (Minnesota

Population Center 2010a,b) identified in the heat

health literature as individual risk factors associated

with heat death or illness. We aggregate these variables

at the statistical planning area (SPA) level in order to

explore neighborhood-scale sensitivity to heat risks.

There are 34 SPAs, created by the Cleveland City Plan-

ning Commission and equivalent to neighborhoods

(Cleveland City Planning Commission 2014a; see Fig. 1).

CBG boundaries often overlap SPA boundaries, so we

apportioned CBG variables to SPAs using a simple

spatial weighting scheme based on the fraction of the

SPA that a CBG completely or partially within an SPA

occupies. In addition, we used Cuyahoga County parcel

data (Cuyahoga County Planning Commission 2013a)

to construct an indicator representing the percent of

FIG. 3. Bivariate correlations for the LST–NDVI relationship in

an ensemble of Landsat scenes from May to November. The as-

sociation between LST and vegetation is weakest in the winter and

strongest in the summer.
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residential parcels with no central or wall-through AC

units in Cleveland. As an exploratory step, we report

on Spearman’s bivariate correlations between heat-risk

factors and mean LST.

c. Data on existing and possible tree canopy

Weobtained tree canopy data for parcels in Cleveland

from the Cuyahoga County Planning Commission’s

‘‘Urban Tree Canopy Assessment’’ (UTCA; Cuyahoga

County Planning Commission 2013b). The UTCA data

provide geospatially referenced files of parcels and

contain variables representing percentages of existing

tree canopy (ETC) and vegetated possible tree canopy

(VPTC). The VPTC variable represents the fraction of a

parcel that already contains grass or shrubs, where tree

planting is more likely to occur as a result of the lower

cost of planting and the abundance of vacant vegetated

land (D. Meaney 2015, personal communication). We

used these data in two ways: we first express NDVI in

terms of ETC and then estimate potential LST reduc-

tions based on plausible tree canopy increase scenarios

in the VPTC variable.

d. Geographically weighted regression analysis

We conduct geographically weighted regression

(Fotheringham et al. 2003) on all pixels in Landsat

scenes from May to October (with the exception of the

27 July scene) identified in the LST–NDVI correlations

in Fig. 3 to estimate the effect of vegetation on LST.

GWR is a technique that computes a local regression

equation for each observation in a dataset, where the

influence of each neighboring observation is weighted

according to a user-defined matrix defining spatial

proximity to the regression point. GWR is a modifica-

tion of the ordinary least squares (OLS) regression

specified as follows:

y
i
5b

0
(u

i
, y

i
) 1 b

1
(u

i
, y

i
)x

i1
1 . . . 1 b

n
x
in
1 «

i
, (2)

where yi is the value of the dependent variable at location

i;b0,b1, andbn are local regression coefficients; (ui,yi) is a

specification of the location of regression point i; and «i is

an error term.

GWR is well suited to characterize spatially heteroge-

neous phenomena like LST–NDVI relationships, where

OLS or multiple linear regression may not adequately

describe the variability of the relationship across space

(Foody 2003; Maselli 2002). Estimating UHI intensities

using global models can underestimate the influence of

explanatory variables, and significant improvements in

model fits from GWR versus global models have been

reported (Su et al. 2012; Szymanowski and Kryza 2011;

Ivajn�si�c et al. 2014; Li et al. 2010). GWR has been used to

estimate the effects of land use/land cover on urban

temperatures, finding that vegetation and impervious

surfaces are the strongest factors regulating tempera-

tures (Buyantuyev and Wu 2010; Yuan and Roy 2007;

Mohamed 2013).

Following Eq. (2), we regress LST onNDVI as follows:

LST
i
5b

0
(u

i
, y

i
)1b

1
(u

i
, y

i
)NDVI

i
1 «

i
, (3)

where LSTi is the dependent variable,b0 is the intercept,

and b1 is the local regression coefficient for independent

variable NDVIi.

GWR requires the specification of a spatial weights

matrix that defines which observations are considered

neighbors of an observation for which local regression

coefficients are desired. Neighboring observations in

regularly spaced grids are best represented using a fixed-

bandwidth spatial kernel (Fotheringham et al. 2003).

Landsat data in our study were provided in a raster grid

with a 30-m spatial resolution. Using GIS software, we

converted all rasters to points representing the centroid

of each pixel in an evenly spaced (30m3 30m) grid. To

assess model sensitivity to bandwidth distance, we con-

ducted multiple GWR runs with distance bandwidths of

100, 250, 500, 1000, 1250, and 1500m. As distance in-

creases, r2 values decrease, converging toward 0.7 for

distances $500m (supplemental material 2). Based on

this sensitivity analysis, we considered pixels within a

fixed distance of 500m to be influential in determining

the LST–NDVI relationship and thus conducted all

GWR runs using a 500-m-distance bandwidth. We then

used the GWR results to map bare surface temperature

[BST; i.e., the surface temperature of bare soil, or where

NDVI 5 0 (Jenerette et al. 2011)] and local NDVI re-

gression coefficients. We estimated potential LST re-

ductions by narrowing the theoretical range of NDVI

(61.0) to more realistic values based on ‘‘Urban Tree

Canopy Assessment’’ data, which we describe next.

e. Estimation of cooling potential

We combined the GWR results and the tree canopy

assessment data to estimate and map potential LST re-

ductions. The tree canopy data provide potential canopy

cover percentages that can be used to narrow the the-

oretical range of NDVI (61.0) to more realistic values,

but require the expression of NDVI as a function of

canopy percentages. Mean NDVI values in parcels for

the May–October Landsat scenes showed linear corre-

lations with existing tree canopy (r2 0.59–0.64; supple-

mental material 3). To express NDVI values in terms of

percent tree cover, we conducted, for eachMay–October

Landsat scene, a linear regression of mean NDVI in

parcels on the ETC variable (mean coefficient 5 0.894).
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We then used the NDVI–ETC regression coefficient for

each Landsat scene to estimate cooling potential based

on VPTC values for each parcel. This allowed us to es-

timate cooling from potential planting of tree canopy

values that are more feasible than the theoretical 61.0

range of NDVI values. We then summarized cooling

potential results to SPAs in order to estimate LST re-

ductions in Cleveland’s statistical planning areas. In the

last part of the analysis, we report bivariate correlation

coefficients between sociodemographic and LST–NDVI

GWR coefficients in SPAs to understand how potential

vegetation-induced LST reductions vary among different

heat-vulnerable subpopulations in Cleveland.

4. Results

LST varies among heat-vulnerable subpopulations and

heat risk factors (Table 1). Among the heat-vulnerable

populations considered, Hispanic populations and pop-

ulations with low educational achievement are the most

strongly associated with elevated temperatures. Sta-

tistically significant LST correlations with the variable

‘‘Percent Hispanic’’ ranged from 0.44 to 0.60 for

August–October, and ‘‘Percent no high school di-

ploma’’ versus all Landsat scenes ranged from 0.34 to

0.67 (all were statistically significant). ‘‘Percent African

American’’ shows small negative, but mostly nonstatisti-

cally significant, correlations with LST. ‘‘Percent elderly’’

has negatively strong and significant correlations with

surface temperatures (20.40 to20.73), ‘‘percent living

alone’’ shows only one significant correlation with LST,

and the combination of ‘‘Percent elderly’’ and ‘‘alone’’

is negatively strongly correlated, ranging from 20.42

to 20.67 for all but one of the May–October Landsat

scenes. Both ‘‘percent no AC’’ and ‘‘percent white’’

exhibited nonsignificant correlations.

GWR model diagnostics show improved performance

over OLS: r2 values for OLS regressions ranged from 0.19

to 0.36, while GWR explained 0.65–0.75 of variability in

LST reductions from NDVI (Table 2). Changes in the

Akaike information criterion (AICc) from higher values

(OLS) to lower (GWR) indicate improved fit of obser-

vations in the geographically explicit model. The ensem-

ble of GWR runs produced an intercept (b0, interpreted

as BST) and a regression coefficient (b1) for NDVI for

each regression point in each Landsat scene. Spatial dis-

tributions of BST estimates are presented in Fig. 4. Fol-

lowing Mennis’s (2006) suggestions for mapping GWR

results, we estimated statistical significance by dividing

each local regression coefficient by its standard error and

comparing it with the t tablevalue associated with the

95% confidence interval. For the May–October period,

BST ranged from 17.08 to 58.08C; the lowest mean was

23.88C (5 October), and the highest was 47.28C (1 July).

For most scenes, BST appears lower along the Lake Erie

coastline, shown more clearly in the 31 August and

3 September results (Figs. 4d,e). Local regression co-

efficients (b1) from GWR for NDVI are shown in Fig. 5.

Daily variations in each scene were driven by NDVI

values: in any given scene, LST increases (reductions)

corresponded to low (high) NDVI values. Across

scenes, LST varied according to season, as higher in-

coming solar radiation was detected by the Landsat

sensor during the summer scenes but attenuated during

the fall/winter months.

For all Landsat scenes, the cooling effect of vegetation

on LST reductions ranges between 26.18 and 0.08C for

maximum possible vegetation (i.e., NDVI 5 1.0; nega-

tive signs imply LST reductions), and are estimates

based solely on GWR results. In a few areas, the GWR

models predict increases in LST of up to 6.08C, but these
accounted for only up to 2.1% of observations and were

restricted to an industrial andmostly bare soil small area

near the Lake Erie and Cuyahoga River shores.

Combining the NDVI local coefficients with vege-

tated possible tree canopy data in SPAs constrains po-

tential LST reductions estimated from the GWR results

alone shown in Fig. 5. For May–October, vegetated

possible tree canopy percentages suggest potential LST

reductions ranging from 6.48 to 0.58C (Fig. 6). The

cooling effect is both stronger and more spatially vari-

able from May through July and diminished from Au-

gust to October. Visually, potential LST reductions

appear lowest around the downtown area (and also in

some surrounding SPAs) and highest in outer fringe

SPAs, a pattern consistent with the spatial distribution

of VPTC (Fig. 1). For May–October, the neighborhoods

of Edgewater, Euclid-Green, and Kamm’s received the

largest LST reductions, while Buckeye-Shaker Square,

Clark-Fulton, Goodrich-Kirtland Park, and Downtown

received the lowest LST reduction estimates (Table 3;

see supplementalmaterial 4 for a summary ofVPTC and

VPTC-constrained NDVI values in SPAs).

The effect of vegetation on regulating LST varied

among heat-vulnerable subpopulations and heat risk

factors. We now present socioeconomic variables re-

lated to heat risks for select neighborhoods with the

highest and lowest potential LST reduction estimates.

We focus on these neighborhoods because, as shown on

Table 3 for the May–October period, they consistently

receive the lowest or highest values in LST reduction

potentials. Among the three neighborhoods with highest

cooling potential, there are clear racial differences: while

Euclid-Green in the eastern fringe of the city is 92%

black, Edgewater and Kamm’s, on the western end, are

65%and 79%white (Table 4). In the neighborhoodswith
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the lowest LST reduction potential, Buckeye-Shaker

Square is overwhelmingly black at 80%, Goodrich-

Kirtland Park has high rates of social isolation (67%

are one-person households), and Downtown has a fairly

even split between blacks and whites (44% and 43%,

respectively). Clark-Fulton, another neighborhood with

some of the lowest LST reduction potentials, registers

high rates of Hispanics (48.3%), poverty (nearly 40%),

and low educational achievement (38.2%).

5. Discussion and conclusions

Similar to other studies exploring local variation on

urban temperature–vegetation dynamics, in our study

we find significant model performance improvements

from local (GWR) over global (OLS) models (Su et al.

2012; Szymanowski and Kryza 2011; Ivajn�si�c et al. 2014;

Li et al. 2010). Estimations from our geographically

explicit model runs demonstrate local variation in the

relationship between surface temperature and vegeta-

tion and show that the potential for vegetation-induced

reductions in skin temperatures is highly heterogeneous,

both spatially and temporally. The ensemble of Landsat

imagery from May to November allowed us to establish

variability in the seasonality of the LST–NDVI relation-

ship: vegetation is an effective regulator of temperatures

during the summer, but the effectiveness attenuates in the

winter months. The effect of vegetation-based tempera-

ture regulation, however, can be overestimated by the

use of spectral indices like NDVI if vegetation densities

are not constrained to represent realistic tree canopy

densities. We addressed this by expressing NDVI values

in terms of existing tree canopy percentages and then

deriving NDVI values based on vegetated possible tree

canopy estimates, which were applied to the GWR

parameter estimates to estimate cooling potential. The

spatial variability of our cooling potential results re-

flects the variability of the tree canopy estimates, indicat-

ing that the highest temperature reduction potential is in

neighborhoods with abundant natural land covers (but not

currently covered with tree canopies). Conversely, the

lowest potential for cooling was in areas dominated by

impervious land covers, such as paved surfaces, parking

lots, buildings, and rights-of-way. The comparison of the

TABLE 1. Spearman’s correlations for socioeconomic variables related to heat risks andMay–October land surface temperature in SPAs in

Cleveland, Ohio. Here, ‘‘black’’ indicates black (not Hispanic), and ‘‘white’’ indicates white (not Hispanic).

Percent

black Percent white

Percent

Hispanic

Percent in

poverty

Percent

no AC

Percent no

HS diploma

Percent

elderly

Percent

alone

Percent black

Percent white 20.91a

Percent Hispanic 20.87a 0.75a

Percent in poverty 0.18 20.26 0.00

Percent no AC 0.12 20.35b 20.02 0.22

Percent no HS diploma 20.13 20.08 0.37b 0.67a 0.33

Percent elderly 0.41b 20.27 20.60a 20.19 20.04 20.48a

Percent alone 0.05 0.10 20.17 0.04 20.30 20.21 20.11

Percent elderly and alone 0.41b 20.29 20.60a 0.02 20.09 20.41b 0.92a 0.03

Mean LST (27 May) 20.18 0.07 0.36b 0.05 0.00 0.44b 20.49a 20.17

Mean LST (25 Jun) 20.04 20.11 0.20 0.14 0.15 0.40b 20.52a 20.15

Mean LST (1 Jul) 20.01 20.09 0.18 0.10 0.08 0.34b 20.40b 20.16

Mean LST (31 Aug) 20.26 0.10 0.44a 0.31 0.07 0.67a 20.61a 20.04

Mean LST (3 Sep) 20.33 0.21 0.55a 0.14 20.07 0.48a 20.73a 0.04

Mean LST (13 Sep) 20.28 0.20 0.47a 20.03 20.02 0.35b 20.60a 20.17

Mean LST (5 Oct) 20.46a 0.30 0.60a 20.09 0.04 0.37b 20.40b 20.40b

Percent elderly

and alone

Mean LST

(27 May)

Mean

LST (25 Jun)

Mean

LST (1 Jul)

Mean

LST (31 Aug)

Mean

LST (3 Sep)

Mean

LST (13 Sep)

Per elderly and alone

Mean LST (27 May) 20.46a

Mean LST (25 Jun) 20.46a 0.86a

Mean LST (1 Jul) 20.30 0.92a 0.89a

Mean LST (31 Aug) 20.53a 0.89a 0.74a 0.78a

Mean LST (3 Sep) 20.67a 0.87a 0.77a 0.74a 0.86a

Mean LST (13 Sep) 20.57a 0.94a 0.84a 0.87a 0.79a 0.89a

Mean LST (5 Oct) 20.42b 0.86a 0.67a 0.74a 0.76a 0.74a 0.84a

a p # 0.01.
b p # 0.05.
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cooling potential estimates with heat risk factors suggest

that extreme heat exposure in Cleveland varies across

different socio-demographic groups and is particularly

differentiated among racial and ethnic minorities and

other heat-vulnerable groups. Some of the heat risk factors

we considered, including percent African American, per-

cent 65 years or older, social isolation, lack of AC, and

poverty did not show strong relationships with higher heat

exposure across the city, but Hispanics and those with low

educational achievement appear to have high exposure to

high temperatures, and their neighborhoods are unlikely

to receive temperature reductions because of low vegeta-

tion potentials. Although we did not subject heat risk

factors and GWR results to a formal geographic analysis

analogous to the GWR analysis performed on LST and

NDVI, the values of heat-risk variables among SPAs with

lowest and highest cooling potentials (Table 4) suggest that

the distribution of heat-vulnerable subpopulations in cities

is also spatially heterogeneous. Identification of these

subpopulations requires the inclusion of spatial terms in

order to understand the socio-spatial complexity of tem-

perature, land covers, and populations at risk. As Uejio

et al. (2011, p. 498) have said, ‘‘failing to account for spatial

autocorrelation can provide misleading statistical results.’’

a. Limitations of our study

The methods and data sources used in this paper, con-

sisting of remotely sensed measurements of the surface

UHI, have some limitations. First, besides vegetation cov-

erage estimates like those used in this paper, other factors,

such as vegetation composition and configuration, affect

the temperature reduction potential of vegetated canopies.

Assessing the influence of composition and configuration of

vegetation (as well as of other elements of the built envi-

ronment) on regulating temperatures requires higher spa-

tial and spectral resolution than that of theLandsat imagery

used in our study (Connors et al. 2013). Our approach,

based on Landsat imagery and geostatistical modeling, did

not consider this variable. Second, our remote-sensing ap-

proach requires calibration ofmeasurements to account for

intervening atmosphere and surface radiative properties,

both factors that influence emission and radiation detected

by the Landsat sensor. We addressed this by conducting

atmospheric correction on the ensemble ofLandsat images.

Third, remotely sensed data provide an indirect measure-

ment that does not capture the full, three-dimensional

complexity of urban surfaces. Landsat data used in this

paper do not include surface roughness—an indicator of

variability in vertical and horizontal textures in the urban

environment, implying that our ClevelandUHI description

is limited to horizontal surfaces of land covers. Notwith-

standing the limitations of remotely sensed data, our study

makes use of easily accessible data and employs a re-

producible method for quantifying the surface UHI with a

good degree of both spatial and temporal (seasonal) detail.

b. Potential for mitigation and adaptation

Our research has relevance for climate changemitigation

and adaptation in Cleveland. The potential surface tem-

perature reductions under the vegetated possible tree

canopy increase estimates in theCuyahogaCounty ‘‘Urban

Tree Canopy Assessment’’ can be used to identify statisti-

cal planning areas to target for establishing green zoning

and land-use codes or green infrastructure—twomitigation

and adaptation interventions identified by the ‘‘Cleveland

Climate Action Plan’’ (Sustainable Cleveland 2013) to re-

duce greenhouse gas emissions and increase resilience

against the impacts of climate change. Specifically, our

work can inform the development and implementation of

Cleveland’s update to its urban tree plan (Action 27 in the

‘‘Climate Action Plan’’) by addressing tree canopy deficits

and temperature reduction potentials in specific statistical

planning areas in the city. Deployment of an urban tree

plan informed byUHI-mitigation considerations can lower

temperatures, help reduce exposure to outdoor extreme

heat, improve public health (another goal of the action

plan), contribute tomitigate greenhouse gases emissions by

reducing demand for power generation, and increase at-

mospheric carbon dioxide absorption and storage.

Establishing temperature reduction goals can be useful

to increase the potential for adaptation by estimating re-

duction of disparities among vulnerable populations, for

example, in outcomes of heat-related mortality and mor-

bidity. Temperature reduction goals can be evaluated by

estimating temperature thresholds beyondwhich observed

heat-related mortality or morbidity increase markedly.

McMichael et al. (2008) have made some progress in this

direction by reporting the temperature ranges in which

heat-related mortality increased in cities in low- and

middle-income countries. These thresholds were found to

be higher for cities with hotter summers, signaling that

populations in those cities display higher adaptation ca-

pacity to adverse heat health outcomes. Kovats et al.

TABLE 2. Goodness-of-fit statistics for OLS and GWR runs of

Landsat scenes.

Date

OLS GWR

r 2 AICc r 2 AICc Effective number

27 May 0.35 1 117 336 0.75 890 830 1007.39

25 Jun 0.35 1 086 874 0.73 872 844 1008.99

1 Jul 0.33 1 212 127 0.74 982 141 1012.10

31 Aug 0.32 943 450 0.74 709 909 1012.56

3 Sep 0.36 868 763 0.72 668 051 1012.49

13 Sep 0.35 866 554 0.69 692 026 1010.42

5 Oct 0.19 884 622 0.65 683 439 1014.41
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(2004) evaluated admission cause–specific, and admission

cause– and age group–specific temperature thresholds for

hospital admissions, but the utility of their thresholds for

implementing adaptation or intervention measures is un-

clear, given that many of their estimates of change in

hospitalizations per degree Celsius increase are not

statistically significant. These examples point to the diffi-

culties of establishing temperature thresholds useful for

public health interventions; as McGeehin and Mirabelli

(2001) have argued about U.S. cities, heat tolerance varies

regionally according to heat preparedness among the

population, and, perhaps more importantly, local mean

FIG. 4. BST estimates (b0) from GWR runs for May–October. Estimates are significant at the 95% confidence

interval. Statistical planning areas are overlaid for reference.
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temperatures and the frequency of temperature ex-

tremes. Besides these issues, estimating temperature

thresholds useful for planning heat health adaptations

requires developing heat-related mortality and/or mor-

bidity rates across vulnerable subpopulations, and such

data, typically obtained from county coroner death certif-

icates or emergency department/inpatient hospitalization

records, were not available for this study, and this remains

an area for future research.

c. Addressing tree canopy inequity through the urban
planning process

The potential for cooling estimated in our research is

directly related to VPTC percentages. Consequently,

FIG. 5. NDVI local regression coefficients (b1) from GWR runs for May–October. Estimates are significant at the

95% confidence interval. Statistical planning areas are overlaid for reference.
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the lowest LST reduction potentials are found in neigh-

borhoods with low VPTC, and a vulnerable population

(Hispanics) is concentrated in neighborhoodswith some of

the lowest VPTC values. Addressing tree canopy inequity

in the urban planning process by increasing the vegetation-

based cooling potential in neighborhoods with low VPTC

and high percentages of vulnerable populations could

be achieved through land-use/land-cover alterations

that increase VPTC (e.g., reverting impervious surfaces

to soil, grass, or ultimately tree canopy). However, this

appears unlikely given contestations in the planning

process around resources like water and tax dollars to

FIG. 6. Potential LST (8C) reductions from vegetated possible tree canopy increases in statistical planning areas in

Cleveland, Ohio.
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develop and maintain urban green spaces (Declet-

Barreto et al. 2013) and siting of urban revegetation

projects (Heynen 2003). Increasing tree canopy in

areas of highest deficits may be further constrained by

tree maintenance and upkeep considerations in urban

revegetation projects, which typically target owner-

occupied residential properties and exclude renters,

presenting an impediment to lower-income populations

TABLE 3. Mean potential LST (8C) reductions from vegetated possible tree canopy increases in statistical planning areas in

Cleveland, Ohio.

SPA 27 May (8C) 25 Jun (8C) 1 Jul (8C) 31 Aug (8C) 3 Sep (8C) 13 Sep (8C) 5 Oct (8C)

Bellaire-Puritas 3.57 3.57 20.65 2.08 1.98 2.13 1.26

Broadway-Slavic Village 4.12 3.82 4.76 2.10 2.08 2.27 1.57

Brooklyn Centre 3.74 3.75 4.54 1.98 2.02 2.10 1.54

Buckeye-Shaker Square 3.08 2.57 3.24 1.41 1.45 1.88 1.24

Buckeye-Woodhill 3.36 3.03 4.05 1.78 1.75 1.86 1.22

Central 4.07 3.28 4.90 1.92 2.29 2.15 1.64

Clark-Fulton 2.79 2.67 3.16 1.39 1.38 1.49 1.10

Collinwood-Nottingham 4.26 3.87 4.63 2.57 1.79 2.29 1.30

Cudell 3.46 3.43 4.06 1.77 1.78 1.90 1.60

Cuyahoga Valley 2.90 2.08 3.24 1.53 1.56 1.54 1.18

Detroit Shoreway 3.27 2.88 3.57 1.41 1.56 1.59 1.13

Downtown 2.44 2.21 2.15 1.17 1.37 1.17 0.88

Edgewater 5.35 5.05 6.37 2.48 2.48 2.78 2.44

Euclid-Green 4.70 3.96 5.64 2.58 2.22 2.78 1.97

Fairfax 3.35 2.76 4.46 1.87 1.88 1.75 1.45

Glenville 3.93 3.47 4.35 2.17 1.76 2.26 1.46

Goodrich-Kirtland Park 3.29 2.65 3.12 1.58 1.60 1.44 1.11

Hopkins 4.05 4.02 4.78 2.08 2.12 2.40 1.81

Hough 3.83 3.35 4.37 2.16 1.76 2.18 1.55

Jefferson 3.60 3.19 4.02 1.84 1.87 2.18 1.46

Kamm’s 4.50 4.25 5.33 2.26 2.24 2.63 2.00

Kinsman 3.89 3.76 4.88 1.94 1.98 2.17 1.56

Lee-Harvard 3.88 3.98 4.81 2.37 2.15 2.33 1.72

Lee-Seville 3.78 3.74 4.34 2.27 1.87 2.20 1.04

Mount Pleasant 2.82 2.59 3.22 1.48 1.48 1.57 1.27

North Shore Collinwood 4.14 3.70 4.75 2.31 1.79 2.21 1.5

Ohio City 3.11 2.83 3.43 1.62 1.60 1.81 1.38

Old Brooklyn 4.26 3.91 5.2 2.26 2.27 2.41 1.81

Tremont 3.13 2.83 3.79 1.53 1.66 1.64 1.16

Union-Miles 3.31 2.94 4.10 2.01 1.82 1.99 1.38

University 3.81 3.44 4.91 2.14 1.94 2.09 1.83

West Boulevard 3.42 3.32 3.95 1.75 1.76 2.05 1.53

St. Clair-Superior 4.19 3.74 4.36 2.27 2.04 2.26 1.63

Stockyards 3.08 2.86 3.66 1.44 1.62 1.70 1.10

TABLE 4. Socioeconomic status and heat-risk variables for statistical planning areas with lowest and highest LST reduction potentials in

Cleveland. The highest LST potentials were in Edgewater, Euclid-Green, and Kamm’s, while the lowest potentials were in Buckeye-

Shaker Square, Clark-Fulton, Downtown, and Goodrich-Kirtland Park.

SPA

Percent

black

Percent

white

Percent

Hispanic

Percent

in poverty

Percent no

HS diploma

Percent

no AC

Percent

elderly

Percent

living alone

Percent elderly

and alone

Edgewater 20.9 65.1 10.4 31.3 22.1 85.5 14.5 58.5 14.2

Euclid-Green 91.8 6.0 1.0 26.5 19.4 91.8 12.8 40.4 8.9

Kamm’s 9.5 79.2 7.5 10.4 11.2 70.6 15.9 38.3 13.0

Buckeye-Shaker

Square

80.4 13.4 1.6 25.4 17.0 94.4 15.5 50.9 14.5

Clark-Fulton 17.5 32.2 48.3 39.7 38.2 96.4 8.4 29.0 6.4

Downtown 43.5 43.0 3.6 17.0 19.3 34.1 2.5 70.3 3.9

Goodrich-Kirtland

Park

25.3 35.7 10.4 15.0 23.5 96.9 2.9 66.8 4.3

520 WEATHER , CL IMATE , AND SOC IETY VOLUME 8

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC



from enjoying the benefits of urban greening (Perkins

et al. 2004).

Our research contributes to the evaluation of a tech-

nical solution—the application of vegetation—to highly

heterogeneous summertime heat, a socio-spatial expres-

sion of historical and persistent socio-environmental in-

equities. Notwithstanding the demonstrated cooling

potential of vegetation in this paper, tree planting policies

based exclusively on such criteria, as measured by vege-

tation increase potentials, could lead to increasing in-

equities and unjust distributions of urban tree canopies by

prioritizing canopy density increases in areas with exist-

ing urban forest islands [i.e., in or near higher-income

neighborhoods (Heynen 2006)]. To avoid inadvertently

creating or exacerbating inequities, we must engage

‘‘critically in planning efforts to produce more equitable

urban environments for everyone’’ (Heynen 2006, p. 20).

Canopied vegetation increases should be seen as one

component of amultifaceted approach to redressing socio-

environmental inequities through an urban planning pro-

cess that mitigates not just observable effects (e.g., higher

summertime temperatures in low-socioeconomic-status

neighborhoods), but also the factors in the regional polit-

ical economy that contribute to the production of such

inequities (e.g., income inequality, uneven residential

ownership rates, and urban greening focus on private

property). In this regard, a planning process engaging

multiple scales of governance (municipal, regional,

state, and federal) could, for example, facilitate in-

creases in homeownership rates among low-income

communities. Higher homeownership rates could help

extend to low-income communities the range of mod-

ifications homeowners can make to reduce both indoor

and outdoor temperatures and energy consumption

(especially tree planting), thereby decreasing economic

burdens—and, potentially, health burdens—associated

with extreme heat. Addressing socioeconomic dispar-

ities in income and housing tenure can augment the

availability and effectiveness of vegetation-based cooling

in cities like Cleveland: research in other Midwestern

cities has shown that urban tree canopy declines over

time are related to household income [Indianapolis

(Heynen 2006)], and lower rates of residential urban tree

cover are associated with percentages of minorities and

residential renters [Milwaukee (Heynen et al. 2006)].

Addressing the needs of vulnerable communities in the

urban planning process is essential because the vulnera-

ble are ‘‘often unable to produce local and healthy urban

ecologies for themselves’’ (e.g., via disposable income to

pay for tree planting and maintenance) (Heynen 2006,

p. 5), relying on public planting of street trees and the

creation of public green spaces. In this paper, we have

shown that vegetation can provide UHI-mitigating

ecosystem services and that cooling potentials vary con-

siderably both within the built environment, according to

vegetation planting potentials, and socio-spatially among

vulnerable populations. Our study identifies areas of

Cleveland that can be targeted for UHI-mitigation action

under the city’s Climate Adaptation Plan to reduce heat

exposure among the most vulnerable populations and

urges policymakers to address broader equity concerns

by formulating policies that mitigate, together with

vegetation-based UHI interventions, the production of

heat-related socio-environmental inequities.

Acknowledgments. This research was made possible

by a grant from the Natural Resources Defense Coun-

cil’s Science Center. The authors declare that there are

no conflicts of interest.

REFERENCES

Arnfield, A., 2003: Two decades of urban climate research: A review

of turbulence, exchanges of energy and water, and the urban

heat island. Int. J. Climatol., 23, 1–26, doi:10.1002/joc.859.

Balling, R. C., and S. W. Brazel, 1987: The impact of rapid urbani-

zation on pan evaporation in Phoenix, Arizona. J. Climatol., 7,

593–597, doi:10.1002/joc.3370070607.

Bobb, J. F., R. D. Peng, M. L. Bell, and F. Dominici, 2014: Heat-

related mortality and adaptation to heat in the United

States. Environ. Health Perspect., 122, 811–816, doi:10.1289/

ehp.1307392.

Boumans, R. J., D. L. Phillips, W. Victery, and T. D. Fontaine,

2014: Developing a model for effects of climate change on

human health and health–environment interactions: Heat

stress in Austin, Texas. Urban Climate, 8, 78–99, doi:10.1016/

j.uclim.2014.03.001.

Buscail, C., E. Upegui, and J.-F. Viel, 2012: Mapping heatwave

health risk at the community level for public health action. Int.

J. Health Geogr., 11, 38, doi:10.1186/1476-072X-11-38.

Buyantuyev, A., and J.Wu, 2010: Urban heat islands and landscape

heterogeneity: Linking spatiotemporal variations in surface

temperatures to land-cover and socioeconomic patterns.

Landscape Ecol., 25, 17–33, doi:10.1007/s10980-009-9402-4.

Chow, W. T. L., R. L. Pope, C. A. Martin, and A. J. Brazel, 2011:

Observing and modeling the nocturnal park cool island of an

arid city: Horizontal and vertical impacts. Theor. Appl. Cli-

matol., 103, 197–211, doi:10.1007/s00704-010-0293-8.
Cleveland City Planning Commission, 2014a: 2014 Neighborhood

fact sheets. Accessed 6 July 2015. [Available online at http://

planning.city.cleveland.oh.us/2010census/factsheets.php.]

——, 2014b: 8 ideas for vacant land re-use in Cleveland. Accessed

10 October 2014. [Available online at http://planning.city.

cleveland.oh.us/ftp/8IdeasForVacantLandReuseCleveland.pdf.]

Connors, J. P., C. S. Galletti, and W. T. Chow, 2013: Landscape

configuration and urban heat island effects: Assessing the re-

lationship between landscape characteristics and land surface

temperature in Phoenix, Arizona. Landscape Ecol., 28, 271–

283, doi:10.1007/s10980-012-9833-1.

Cuyahoga County Geographical Information Systems, 2016: Cities

shapefile. Accessed 27 September 2016. [Available online at

http://gis.cuyahogacounty.us/en-US/GIS-Data.aspx.]

OCTOBER 2016 DECLET - BARRETO ET AL . 521

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC

http://dx.doi.org/10.1002/joc.859
http://dx.doi.org/10.1002/joc.3370070607
http://dx.doi.org/10.1289/ehp.1307392
http://dx.doi.org/10.1289/ehp.1307392
http://dx.doi.org/10.1016/j.uclim.2014.03.001
http://dx.doi.org/10.1016/j.uclim.2014.03.001
http://dx.doi.org/10.1186/1476-072X-11-38
http://dx.doi.org/10.1007/s10980-009-9402-4
http://dx.doi.org/10.1007/s00704-010-0293-8
http://planning.city.cleveland.oh.us/2010census/factsheets.php
http://planning.city.cleveland.oh.us/2010census/factsheets.php
http://planning.city.cleveland.oh.us/ftp/8IdeasForVacantLandReuseCleveland.pdf
http://planning.city.cleveland.oh.us/ftp/8IdeasForVacantLandReuseCleveland.pdf
http://dx.doi.org/10.1007/s10980-012-9833-1
http://gis.cuyahogacounty.us/en-US/GIS-Data.aspx


Cuyahoga County Planning Commission, 2013a: Cuyahoga County

GIS parcels dataset. Accessed 6 July 2015. [Available online at

ftp.gis.cuyahogacounty.us.]

——, 2013b: Cuyahoga County urban tree canopy assessment.

Accessed 6 July 2015. [Available online at http://planning.co.

cuyahoga.oh.us/canopy/downloads.html.]

Declet-Barreto, J., A. J. Brazel, C. A. Martin, W. T. Chow, and

S. L. Harlan, 2013: Creating the park cool island in an inner-

city neighborhood: Heat mitigation strategy for Phoenix, AZ.

Urban Ecosyst., 16, 617–635, doi:10.1007/s11252-012-0278-8.

Filleul, L., and Coauthors, 2006: The relation between tempera-

ture, ozone, andmortality in nine French cities during the heat

wave of 2003. Environ. Health Perspect., 114, 1344–1347,

doi:10.1289/ehp.8328.

Foody, G., 2003: Geographical weighting as a further refinement to

regressionmodelling:An example focused on theNDVI–rainfall

relationship. Remote Sens. Environ., 88, 283–293, doi:10.1016/

j.rse.2003.08.004.

Fotheringham, A. S., C. Brunsdon, and M. Charlton, 2003: Geo-

graphically Weighted Regression: The Analysis of Spatially

Varying Relationships. John Wiley & Sons, 284 pp.

Frey, W. H., and D. Myers, 2005: Racial segregation in U.S. met-

ropolitan areas and cities, 1990–2000: Patterns, trends, and ex-

planations. Population Studies Center Research Rep. 05-573,

66 pp. [Available online at http://www.frey-demographer.org/

reports/R-2005-2_RacialSegragationTrends.pdf.]

Gallo, K., A. McNab, T. Karl, J. Brown, J. Hood, and J. Tarpley,

1993: The use of a vegetation index for assessment of the urban

heat island effect. Remote Sens., 14, 2223–2230, doi:10.1080/

01431169308954031.

Galster, G. C., 1990: White flight from racially integrated neigh-

bourhoods in the 1970s: The Cleveland experience. Urban

Stud., 27, 385–399, doi:10.1080/00420989020080341.

Gasparrini, A., and Coauthors, 2015: Temporal variation in heat–

mortality associations: A multicountry study. Environ. Health

Perspect., 123, 1200–1207, doi:10.1289/ehp.1409070.

Harlan, S. L.,A. J. Brazel, L. Prashad,W.L. Stefanov, andL.Larsen,

2006: Neighborhood microclimates and vulnerability to

heat stress. Soc. Sci. Med., 63, 2847–2863, doi:10.1016/

j.socscimed.2006.07.030.

——, J. H. Declet-Barreto, W. L. Stefanov, and D. B. Petitti, 2013:

Neighborhood effects on heat deaths: Social and environ-

mental predictors of vulnerability in Maricopa County, Ari-

zona. Environ. Health Perspect., 121, 197–204, doi:10.1289/

ehp.1104625.

Hattis, D., Y. Ogneva-Himmelberger, and S. Ratick, 2012: The

spatial variability of heat-related mortality in Massachusetts.

Appl. Geogr., 33, 45–52, doi:10.1016/j.apgeog.2011.07.008.

Heisler, G. M., and A. J. Brazel, 2010: The urban physical environ-

ment: Temperature and urban heat islands. Urban Ecosystem

Ecology, Agron. Monogr., No. 55, American Society of

Agronomy, 29–56.

Hewitt, V., E. Mackres, and K. Shickman, 2014: Cool policies for

cool cities: Best practices for mitigating urban heat islands in

North American cities. American Council for an Energy-

Efficient Economy Research Rep. U1405, 15 pp. [Available

online at http://www.aceee.org/research-report/u1405.]

Heynen, N., 2003: The scalar production of injustice within

the urban forest. Antipode, 35, 980–998, doi:10.1111/

j.1467-8330.2003.00367.x.

——, 2006: Green urban political ecologies: Toward a better un-

derstanding of inner-city environmental change. Environ.

Plann., 38A, 499–516, doi:10.1068/a37365.

——, H. A. Perkins, and P. Roy, 2006: The political ecology of

uneven urban green space: The impact of political economy

on race and ethnicity in producing environmental inequality

in Milwaukee. Urban Aff. Rev., 42, 3–25, doi:10.1177/

1078087406290729.

Hondula, D. M., R. E. Davis, M. J. Leisten, M. V. Saha, L. M.

Veazey, and C. R. Wegner, 2012: Fine-scale spatial variability

of heat-related mortality in Philadelphia County, USA, from

1983–2008: A case-series analysis. Environ. Health, 11, 16,

doi:10.1186/1476-069X-11-16.

Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Re-

mote sensing of the urban heat island effect across biomes in

the continental USA. Remote Sens. Environ., 114, 504–513,

doi:10.1016/j.rse.2009.10.008.

Ivajn�si�c, D., M. Kaligari�c, and I. �Ziberna, 2014: Geographically

weighted regression of the urban heat island of a small city.

Appl. Geogr., 53, 341–353, doi:10.1016/j.apgeog.2014.07.001.

Jenerette, G. D., S. L. Harlan, A. Brazel, N. Jones, L. Larsen, and

W. L. Stefanov, 2007: Regional relationships between surface

temperature, vegetation, and human settlement in a rapidly

urbanizing ecosystem. Landscape Ecol., 22, 353–365,

doi:10.1007/s10980-006-9032-z.

——, ——, W. L. Stefanov, and C. A. Martin, 2011: Ecosystem

services and urban heat riskscape moderation: Water, green

spaces, and social inequality in Phoenix, USA.Ecol. Appl., 21,

2637–2651, doi:10.1890/10-1493.1.

Jesdale, B. M., R. Morello-Frosch, and L. Cushing, 2013: The racial/

ethnic distribution of heat risk–related land cover in relation to

residential segregation.Environ. Health Perspect., 121, 811–817,

doi:10.1289/ehp.1205919.

Jin, S., L. Yang, P. Danielson, C. Homer, J. Fry, and G. Xian, 2013:

A comprehensive change detection method for updating the

National Land Cover Database to circa 2011. Remote Sens.

Environ., 132, 159–175, doi:10.1016/j.rse.2013.01.012.

Johnson, D. P., and J. S. Wilson, 2009: The socio-spatial dynamics

of extreme urban heat events: The case of heat-related deaths

in Philadelphia. Appl. Geogr., 29, 419–434, doi:10.1016/

j.apgeog.2008.11.004.

——, ——, and G. C. Luber, 2009: Socioeconomic indicators of

heat-related health risk supplemented with remotely sensed

data. Int. J. Health Geogr., 8, 57, doi:10.1186/1476-072X-8-57.

Kaiser, R., A. Le Tertre, J. Schwartz, C. A. Gotway, W. R. Daley,

and C. H. Rubin, 2007: The effect of the 1995 heat wave in

Chicago on all-cause and cause-specific mortality. Amer.

J. Public Health, 97 (Suppl. 1), S158–S162, doi:10.2105/

AJPH.2006.100081.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006:

World map of the Köppen–Geiger climate classification

updated. Meteor. Z., 15, 259–263, doi:10.1127/0941-2948/

2006/0130.

Kovats, R. S., S. Hajat, and P. Wilkinson, 2004: Contrasting pat-

terns of mortality and hospital admissions during hot weather

and heat waves in greater London,UK.Occup. Environ.Med.,

61, 893–898, doi:10.1136/oem.2003.012047.

Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between

urban heat islands and heat waves: The impact in cities is

larger than the sum of its parts. J. Appl. Meteor. Climatol., 52,

2051–2064, doi:10.1175/JAMC-D-13-02.1.

Li, S., Z. Zhao, X. Miaomiao, and Y. Wang, 2010: Investigating

spatial non-stationary and scale-dependent relationships be-

tween urban surface temperature and environmental factors

using geographically weighted regression. Environ. Modell.

Software, 25, 1789–1800, doi:10.1016/j.envsoft.2010.06.011.

522 WEATHER , CL IMATE , AND SOC IETY VOLUME 8

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC

ftp.gis.cuyahogacounty.us
http://planning.co.cuyahoga.oh.us/canopy/downloads.html
http://planning.co.cuyahoga.oh.us/canopy/downloads.html
http://dx.doi.org/10.1007/s11252-012-0278-8
http://dx.doi.org/10.1289/ehp.8328
http://dx.doi.org/10.1016/j.rse.2003.08.004
http://dx.doi.org/10.1016/j.rse.2003.08.004
http://www.frey-demographer.org/reports/R-2005-2_RacialSegragationTrends.pdf
http://www.frey-demographer.org/reports/R-2005-2_RacialSegragationTrends.pdf
http://dx.doi.org/10.1080/01431169308954031
http://dx.doi.org/10.1080/01431169308954031
http://dx.doi.org/10.1080/00420989020080341
http://dx.doi.org/10.1289/ehp.1409070
http://dx.doi.org/10.1016/j.socscimed.2006.07.030
http://dx.doi.org/10.1016/j.socscimed.2006.07.030
http://dx.doi.org/10.1289/ehp.1104625
http://dx.doi.org/10.1289/ehp.1104625
http://dx.doi.org/10.1016/j.apgeog.2011.07.008
http://www.aceee.org/research-report/u1405
http://dx.doi.org/10.1111/j.1467-8330.2003.00367.x
http://dx.doi.org/10.1111/j.1467-8330.2003.00367.x
http://dx.doi.org/10.1068/a37365
http://dx.doi.org/10.1177/1078087406290729
http://dx.doi.org/10.1177/1078087406290729
http://dx.doi.org/10.1186/1476-069X-11-16
http://dx.doi.org/10.1016/j.rse.2009.10.008
http://dx.doi.org/10.1016/j.apgeog.2014.07.001
http://dx.doi.org/10.1007/s10980-006-9032-z
http://dx.doi.org/10.1890/10-1493.1
http://dx.doi.org/10.1289/ehp.1205919
http://dx.doi.org/10.1016/j.rse.2013.01.012
http://dx.doi.org/10.1016/j.apgeog.2008.11.004
http://dx.doi.org/10.1016/j.apgeog.2008.11.004
http://dx.doi.org/10.1186/1476-072X-8-57
http://dx.doi.org/10.2105/AJPH.2006.100081
http://dx.doi.org/10.2105/AJPH.2006.100081
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1136/oem.2003.012047
http://dx.doi.org/10.1175/JAMC-D-13-02.1
http://dx.doi.org/10.1016/j.envsoft.2010.06.011
Default User
Highlight

Default User
Highlight



Ma,W., Y.-H. Chen, and J. Zhou, 2008: Quantitative analysis of land

surface temperature-vegetation indexes relationship based on

remote sensing. Proc. 21st ISPRS Congress, Youth Forum,

Beijing, China, International Society for Photogrammetry and

Remote Sensing, 261–264. [Available online at http://www.

isprs.org/proceedings/XXXVII/congress/6b_pdf/43.pdf.]

Maselli, F., 2002: Improved estimation of environmental parame-

ters through locally calibrated multivariate regression ana-

lyses. Photogramm. Eng. Remote Sens., 68, 1163–1172.

McGeehin, M. A., andM.Mirabelli, 2001: The potential impacts of

climate variability and change on temperature-related mor-

bidity and mortality in the United States. Environ. Health

Perspect., 109 (Suppl. 2), 185, doi:10.2307/3435008.

McMichael, A. J., and Coauthors, 2008: International study of tem-

perature, heat and urban mortality: The ‘ISOTHERM’ project.

Int. J. Epidemiol., 37, 1121–1131, doi:10.1093/ije/dyn086.

Mennis, J., 2006: Mapping the results of geographically weighted

regression. Cartographic J., 43, 171–179, doi:10.1179/

000870406X114658.

Minnesota Population Center, 2016a: American community survey:

5-year data [2006–2010, block groups and larger areas]. National

Historical Geographic Information System, version 2.0. Subset

used: Tables B15002: Sex by educational attainment for the

population 25 years and over; and C17002: Ratio of income to

poverty level in the past 12 months. Accessed 22 September

2016. [Available online at http://www.nhgis.org/.]

——, 2016b: 2010 Census: SF1a—P & H Tables [Block groups and

larger areas]. National Historical Geographic Information

System, version 2.0. Subset used: Tables P7: Hispanic or La-

tino origin by race (total races tallied); P12: Sex by age; and

P25: Households by presence of people 65 years and over,

household size, and household type. Accessed 22 September

2016. [Available online at http://www.nhgis.org/.]

Mohamed, M., 2013: Summer land surface temperature: Small-

local variation in intro-urban environment in El Paso, TX.

Ph.D. dissertation, TheUniversity of Texas at El Paso, 145 pp.

NCEI, 2015: Daily summaries for air temperature at Cleveland

Burke LakeAirport, OH. NCEI, accessed 22 September 2016.

[Available online at http://www.ncdc.noaa.gov/cdo-web/.]

Oke, T. R., 1997: The changing climatic environments: Urban cli-

mates and global environmental change. Applied Climatology

Principals and Practice, R. D. Thompson and A. Perry, Eds.,

Routledge, 273–287.

——, 2006: Towards better scientific communication in urban cli-

mate. Theor. Appl. Climatol., 84, 179–190, doi:10.1007/

s00704-005-0153-0.

Onishi, A., X. Cao, T. Ito, F. Shi, and H. Imura, 2010: Evaluating

the potential for urban heat-island mitigation by greening

parking lots. Urban For. Urban Greening, 9, 323–332,

doi:10.1016/j.ufug.2010.06.002.

Pattenden, S., and Coauthors, 2010: Ozone, heat and mortality:

Acute effects in 15 British conurbations. Occup. Environ.

Med., 67, 699–707, doi:10.1136/oem.2009.051714.

Perkins, H., N. Heynen, and J. Wilson, 2004: Inequitable access to

urban reforestation: The impact of urban political economy on

housing tenure and urban forests. Cities, 21, 291–299,

doi:10.1016/j.cities.2004.04.002.

Reid, C. E., andCoauthors, 2012: Evaluation of a heat vulnerability

index on abnormally hot days: An environmental public

health tracking study.Environ. Health Perspect., 120, 715–720,

doi:10.1289/ehp.1103766.

Ruddell, D. M., S. L. Harlan, S. Grossman-Clarke, and

A. Buyantuyev, 2010: Risk and exposure to extreme heat in

microclimates of Phoenix, AZ. Geospatial Techniques in

Urban Hazard andDisaster Analysis, P. S. Showalter and Y. Lu,

Eds., Geotechnologies and the Environment, Vol. 2, Springer,

179–202, doi:10.1007/978-90-481-2238-7_9.

Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and

M. Wang, 2014: Anthropogenic heating of the urban envi-

ronment due to air conditioning. J. Geophys. Res. Atmos., 119,

5949–5965, doi:10.1002/2013JD021225.

Sheridan, S. C., A. J. Kalkstein, and L. S. Kalkstein, 2009: Trends in

heat-related mortality in the United States, 1975–2004. Nat.

Hazards, 50, 145–160, doi:10.1007/s11069-008-9327-2.

Stone, B., J. Vargo, P. Liu, D. Habeeb, A. DeLucia, M. Trail,

Y. Hu, and A. Russell, 2014: Avoided heat-related mortality

through climate adaptation strategies in three US cities. PloS

One, 9, e100852, doi:10.1371/journal.pone.0100852.

Su, Y.-F., G. M. Foody, and K.-S. Cheng, 2012: Spatial non-

stationarity in the relationships between land cover and sur-

face temperature in an urban heat island and its impacts on

thermally sensitive populations.LandscapeUrban Plann., 107,

172–180, doi:10.1016/j.landurbplan.2012.05.016.

Sun, D., and M. Kafatos, 2007: Note on the NDVI–LST relation-

ship and the use of temperature-related drought indices over

North America. Geophys. Res. Lett., 34, L24406, doi:10.1029/

2007GL031485.

Sustainable Cleveland, 2013: Cleveland Climate Action Plan:

Building thriving and healthy neighborhoods. [Available online

at https://d3n8a8pro7vhmx.cloudfront.net/sustainablecleveland/

pages/149/attachments/original/1461798511/Cleveland_Climate_

Action_Plan.pdf?1461798511.]

Szymanowski, M., and M. Kryza, 2011: Application of geo-

graphically weighted regression for modelling the spatial

structure of urban heat island in the city of Wroclaw (SW

Poland). Procedia Environ. Sci., 3, 87–92, doi:10.1016/

j.proenv.2011.02.016.

Tucker, C. J., 1979: Red and photographic infrared linear combi-

nations for monitoring vegetation. Remote Sens. Environ., 8,

127–150, doi:10.1016/0034-4257(79)90013-0.

Uejio, C. K., O. V. Willhelmi, J. S. Golden, D. M. Mills, S. P.

Gulino, and J. P. Samenow, 2011: Intra-urban societal

vulnerability to extreme heat: The role of heat exposure

and the built environment, socioeconomics, and neighbor-

hood stability. Health Place, 17, 498–507, doi:10.1016/

j.healthplace.2010.12.005.

U.S. Census Bureau, 2014: State and countyQuickFacts: Cleveland

(city), Ohio. Accessed 18 October 2016. [Available online at

http://quickfacts.census.gov/qfd/states/39/3916000.html.]

USGS, 2016: USGS global visualization viewer. Accessed 5 May

2016. [Available online at http://glovis.usgs.gov.]

Voogt, J. A., and T. Oke, 1998: Effects of urban surface geometry

on remotely-sensed surface temperature. Int. J. Remote Sens.,

19, 895–920, doi:10.1080/014311698215784.

——, and T. R. Oke, 2003: Thermal remote sensing of urban cli-

mates. Remote Sens. Environ., 86, 370–384, doi:10.1016/

S0034-4257(03)00079-8.

White-Newsome, J. L., S. J. Brines, D. G. Brown, J. T. Dvonch,

C. J. Gronlund, K. Zhang, E. M. Oswald, and M. S. O’Neill,

2013: Validating satellite-derived land surface temperature

with in situ measurements: A public health perspective.

Environ. Health Perspect., 121, 925–931, doi:10.1289/

ehp.1206176.

——, B. Ekwurzel, M. Baer-Schultz, K. L. Ebi, M. S. O’Neill, and

G. B. Anderson, 2014a: Survey of county-level heat pre-

paredness and response to the 2011 summer heat in 30 U.S.

OCTOBER 2016 DECLET - BARRETO ET AL . 523

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC

http://www.isprs.org/proceedings/XXXVII/congress/6b_pdf/43.pdf
http://www.isprs.org/proceedings/XXXVII/congress/6b_pdf/43.pdf
http://dx.doi.org/10.2307/3435008
http://dx.doi.org/10.1093/ije/dyn086
http://dx.doi.org/10.1179/000870406X114658
http://dx.doi.org/10.1179/000870406X114658
http://www.nhgis.org/
http://www.nhgis.org/
http://www.ncdc.noaa.gov/cdo-web/
http://dx.doi.org/10.1007/s00704-005-0153-0
http://dx.doi.org/10.1007/s00704-005-0153-0
http://dx.doi.org/10.1016/j.ufug.2010.06.002
http://dx.doi.org/10.1136/oem.2009.051714
http://dx.doi.org/10.1016/j.cities.2004.04.002
http://dx.doi.org/10.1289/ehp.1103766
http://dx.doi.org/10.1007/978-90-481-2238-7_9
http://dx.doi.org/10.1002/2013JD021225
http://dx.doi.org/10.1007/s11069-008-9327-2
http://dx.doi.org/10.1371/journal.pone.0100852
http://dx.doi.org/10.1016/j.landurbplan.2012.05.016
http://dx.doi.org/10.1029/2007GL031485
http://dx.doi.org/10.1029/2007GL031485
https://d3n8a8pro7vhmx.cloudfront.net/sustainablecleveland/pages/149/attachments/original/1461798511/Cleveland_Climate_Action_Plan.pdf?1461798511
https://d3n8a8pro7vhmx.cloudfront.net/sustainablecleveland/pages/149/attachments/original/1461798511/Cleveland_Climate_Action_Plan.pdf?1461798511
https://d3n8a8pro7vhmx.cloudfront.net/sustainablecleveland/pages/149/attachments/original/1461798511/Cleveland_Climate_Action_Plan.pdf?1461798511
http://dx.doi.org/10.1016/j.proenv.2011.02.016
http://dx.doi.org/10.1016/j.proenv.2011.02.016
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/j.healthplace.2010.12.005
http://dx.doi.org/10.1016/j.healthplace.2010.12.005
http://quickfacts.census.gov/qfd/states/39/3916000.html
http://glovis.usgs.gov
http://dx.doi.org/10.1080/014311698215784
http://dx.doi.org/10.1016/S0034-4257(03)00079-8
http://dx.doi.org/10.1016/S0034-4257(03)00079-8
http://dx.doi.org/10.1289/ehp.1206176
http://dx.doi.org/10.1289/ehp.1206176


states. Environ. Health Perspect., 122, 573–574, doi:10.1289/

ehp.1306693.

——, and Coauthors, 2014b: Strategies to reduce the harmful

effects of extreme heat events: A four-city study. Int.

J. Environ. Res. Public Health, 11, 1960–1988, doi:10.3390/

ijerph110201960.

Yip, F., and Coauthors, 2008: The impact of excess heat events in

Maricopa County, Arizona: 2000–2005. Int. J. Biometeor., 52,
765–772, doi:10.1007/s00484-008-0169-0.

Yuan, F., and S. S. Roy, 2007: Analysis of the relationship between

NDVI and climate variables in Minnesota using geographically

weighted regression and spatial interpolation. Proc. ASPRS

2007 Annual Conf., Tampa, FL, American Society for Photo-

grammetry and Remote Sensing, 784–789.

Yue,W., J. Xu,W. Tan, and L. Xu, 2007: The relationship between

land surface temperature and NDVI with remote sensing:

Application to Shanghai Landsat 7 ETM1 data. Int. J. Remote

Sens., 28, 3205–3226, doi:10.1080/01431160500306906.

524 WEATHER , CL IMATE , AND SOC IETY VOLUME 8

Unauthenticated | Downloaded 03/28/23 12:52 AM UTC

http://dx.doi.org/10.1289/ehp.1306693
http://dx.doi.org/10.1289/ehp.1306693
http://dx.doi.org/10.3390/ijerph110201960
http://dx.doi.org/10.3390/ijerph110201960
http://dx.doi.org/10.1007/s00484-008-0169-0
http://dx.doi.org/10.1080/01431160500306906

